Locally repulsive coupling-induced tunable oscillations.

Chaos

School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.

Published: January 2025

The precise amplitude and period of neuronal oscillations are crucial for the functioning of neuronal networks. We propose a chain model featuring a repulsive coupling at the first node, followed by attractive couplings at subsequent nodes. This model allows for the simultaneous regulation of both quantities. The repulsive coupling at the first neuron enables it to act as a pacemaker, generating oscillations whose amplitude and period are correlated with the coupling strength. At the same time, attractive couplings help transmit these oscillations along the chain, leading to collective oscillations of varying scales. Our study demonstrates that a three-node chain with locally repulsive coupling forms the fundamental structure for generating tunable oscillations. By using a simplified neuron model, we investigate how locally repulsive coupling affects the amplitude and period of oscillations and find results that align with numerical observations. These findings indicate that repulsive couplings play a crucial role in regulating oscillatory patterns within neuronal networks.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0244771DOI Listing

Publication Analysis

Top Keywords

repulsive coupling
16
locally repulsive
12
amplitude period
12
tunable oscillations
8
neuronal networks
8
attractive couplings
8
oscillations
7
repulsive
5
coupling
5
repulsive coupling-induced
4

Similar Publications

Locally repulsive coupling-induced tunable oscillations.

Chaos

January 2025

School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.

The precise amplitude and period of neuronal oscillations are crucial for the functioning of neuronal networks. We propose a chain model featuring a repulsive coupling at the first node, followed by attractive couplings at subsequent nodes. This model allows for the simultaneous regulation of both quantities.

View Article and Find Full Text PDF

Polariton lattices as binarized neuromorphic networks.

Light Sci Appl

January 2025

Spin-Optics laboratory, St. Petersburg State University, St. Petersburg, 198504, Russia.

We introduce a novel neuromorphic network architecture based on a lattice of exciton-polariton condensates, intricately interconnected and energized through nonresonant optical pumping. The network employs a binary framework, where each neuron, facilitated by the spatial coherence of pairwise coupled condensates, performs binary operations. This coherence, emerging from the ballistic propagation of polaritons, ensures efficient, network-wide communication.

View Article and Find Full Text PDF

The potential energy curves, dipole moments and transition dipole moments of the 14 Λ-S states and 30 Ω states of TlBr cation were performed using the multi-reference configuration interaction method. The Davidson correction and spin-orbit coupling effects were also considered. The spectroscopic properties and transition properties of TlBr cation were reported at the first time.

View Article and Find Full Text PDF

Beyond Misfolding: A New Paradigm for the Relationship Between Protein Folding and Aggregation.

Int J Mol Sci

December 2024

Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea.

Aggregation is intricately linked to protein folding, necessitating a precise understanding of their relationship. Traditionally, aggregation has been viewed primarily as a sequential consequence of protein folding and misfolding. However, this conventional paradigm is inherently incomplete and can be deeply misleading.

View Article and Find Full Text PDF

Utilizing the sparsity of the electronic structure problem, fragmentation methods have been researched for decades with great success, pushing the limits of ab initio quantum chemistry ever further. Recently, this set of methods has been expanded to include a fundamentally different approach called excitonic renormalization, providing promising initial results. It builds a supersystem Hamiltonian in a second-quantized-like representation from transition-density tensors of isolated fragments, contracted with biorthogonalized molecular integrals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!