Rat adrenal gland preparations were incubated with radioactive cholesterol and 23,24-dinor-5-cholen-3 beta-ol. Steroids were isolated, purified by thin-layer and high performance liquid chromatography and crystallised to constant specific activity. It was found that the rat adrenal gland can utilise 23,24-dinor-5-cholen-3 beta-ol to produce corticosterone. Also, in contrast to the conversion of cholesterol to corticosterone which occurs in the mitochondrial fraction, the conversion of 23,24-dinor-5-cholen-3 beta-ol to corticosterone occurs in the microsomal fraction. It was concluded that the sesterterpene pathway for steroid biosynthesis can function in the rat adrenal gland and that the intermediates are converted to steroid hormones in the microsomal fraction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0022-4731(85)90118-9DOI Listing

Publication Analysis

Top Keywords

rat adrenal
16
adrenal gland
16
2324-dinor-5-cholen-3 beta-ol
12
steroid biosynthesis
8
sesterterpene pathway
8
corticosterone occurs
8
microsomal fraction
8
biosynthesis sesterterpene
4
rat
4
pathway rat
4

Similar Publications

Corticotropin-releasing factor (CRF) and urocortins (UCN1, UCN2 and UCN3) belong to the same CRF family of neuropeptides. They regulate the neuroendocrine, autonomic and behavioral responses to stress via two CRF receptors (CRF1 and CRF2). Stress, anxiety and depression affects the activity of the hypothalamic-pituitary-adrenal (HPA) axis and the serotoninergic neurotransmission, both being regulated by CRF and CRF-related peptides.

View Article and Find Full Text PDF

Whilst the world sees the tremendous growth of mobile phone technology, radiofrequency electromagnetic radiation (RF-EMR) induced possible health effects have emerged as a topic of recent day debate. The current study is designed to test the hypothesis that chronic 900MHz radiation exposure would potentially dysregulate the stress response system (HPA axis) in vivo, via, its non-thermal mechanisms, leading to alterations in the microarchitecture of the adrenal gland, vulnerable brain regions such as the hippocampus which may results in altered behaviours in rats. Male albino Wistar rats aged four weeks, weighing 50-60g were subjected to 900MHz radiation from a cellphone for four weeks at a rate of one hour per day.

View Article and Find Full Text PDF

Acute and chronic cannabis vapor exposure influences basal and stress-induced release of glucocorticoids in male and female rats.

Psychoneuroendocrinology

December 2024

Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. Electronic address:

Management of stress and anxiety is often listed as the primary motivation behind cannabis use. Human research has found that chronic cannabis use is associated with increased basal cortisol levels but blunted neuroendocrine responses to stress. Preclinical research has demonstrated mixed effects of Δ-tetrahydrocannabinol (THC; the psychoactive constituent of cannabis), much of which is suggestive of dose-dependent effects; however, the predominance of this work has employed an injection method to deliver cannabis.

View Article and Find Full Text PDF

Cancer pain is one of the most common symptoms in patients with advanced cancer. In this study, we aimed to investigate the effects of the -related gene C (MrgC) receptors on bone cancer pain. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured after the inoculation of Walker 256 mammary gland carcinoma cells into the tibia of adult Sprague-Dawley rats.

View Article and Find Full Text PDF

Cell-to-cell communications are desirable for efficient functioning in endocrine cells. Gap junctions and paracrine factors are major mechanisms by which neighboring endocrine cells communicate with each other. The current experiment was undertaken to morphologically examine gap junction expression and developmental changes in rat adrenal medullary chromaffin (AMC) cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!