Interaction with host cell receptors initiates internalization of Kaposi's sarcoma-associated herpesvirus (KSHV) particles. Fusion of viral and host cell membranes, which is followed by release of the viral capsid into the cytoplasm, is executed by the core fusion machinery composed of glycoproteins H (gH), L (gL), and B (gB), that is common to all herpesviruses. KSHV infection has been shown to be sensitive to inhibitors of vacuolar acidification, suggestive of low pH as a fusion trigger. To analyze KSHV entry at the single particle level we developed dual-fluorescent recombinant KSHV strains that incorporate fluorescent protein-tagged glycoproteins and capsid proteins. In addition, we generated a hybrid rhesus monkey rhadinovirus (RRV) that expresses KSHV gB in place of RRV gB to analyze gB-dependent differences in infection pathways. We demonstrated lytic reactivation and infectivity of dual-fluorescent KSHV. Confocal microscopy was used to quantify co-localization of fluorescently-tagged glycoproteins and capsid proteins. Using the ratio of dual-positive KSHV particles to single-positive capsids as an indicator of fusion events we established KSHV fusion kinetics upon infection of different target cells with marked differences in the "time-to-fusion" between cell types. Inhibition of vesicle acidification prevented KSHV particle-cell fusion, implicating low vesicle pH as a requirement. These findings were corroborated by comparison of RRV-YFP wildtype reporter virus and RRV-YFP encoding KSHV gB in place of RRV gB. While RRV wt infection of receptor-overexpressing cells was unaffected by inhibition of vesicle acidification, RRV-YFP expressing KSHV gB was sensitive to Bafilomycin A1, an inhibitor of vacuolar acidification. Single- and dual-fluorescent KSHV strains eliminate the need for virus-specific antibodies and enable the tracking of single viral particles during entry and fusion. Together with a hybrid RRV expressing KSHV gB and classical fusion assays, these novel tools identify low vesicle pH as an endocytotic trigger for KSHV membrane fusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1371/journal.ppat.1012846 | DOI Listing |
PLoS Pathog
January 2025
Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
IKKε is a traditional antiviral kinase known for positively regulating the production of type I interferon (IFN) and the expression of IFN-stimulated genes (ISGs) during various virus infections. However, through an inhibitor screen targeting cellular kinases, we found that IKKε plays a crucial role in the lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV). Mechanistically, during KSHV lytic replication, IKKε undergoes significant SUMOylation at both Lys321 and Lys549 by the viral SUMO E3 ligase ORF45.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany.
Interaction with host cell receptors initiates internalization of Kaposi's sarcoma-associated herpesvirus (KSHV) particles. Fusion of viral and host cell membranes, which is followed by release of the viral capsid into the cytoplasm, is executed by the core fusion machinery composed of glycoproteins H (gH), L (gL), and B (gB), that is common to all herpesviruses. KSHV infection has been shown to be sensitive to inhibitors of vacuolar acidification, suggestive of low pH as a fusion trigger.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA.
Discovered in 1994 in lesions of an AIDS patient, Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the gammaherpesvirus subfamily of the family, which contains a total of nine that infect humans. These viruses all contain a large envelope glycoprotein, glycoprotein B (gB), that is required for viral fusion with host cell membrane to initial infection. Although the atomic structures of five other human herpesviruses in their postfusion conformation and one in its prefusion conformation are known, the atomic structure of KSHV gB has not been reported.
View Article and Find Full Text PDFAm J Hematol
January 2025
Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Primary effusion lymphoma (PEL) is an HIV-associated B-cell non-Hodgkin lymphoma (NHL) caused by Kaposi sarcoma herpesvirus (KSHV). There is no validated prognostic model in PEL, and prognosis is thought to be poor compared to other HIV-associated NHL. We derived the PEL-Prognostic score (PEL-PS) from an international real-world training set of 59 patients with HIV-associated PEL who received first-line anthracycline-containing chemotherapy from the HIV and AIDS Malignancy Branch at the National Cancer Institute (NCI) in the United States and the National Center for HIV Malignancy at the Chelsea and Westminster Hospital (CWH) in England from 2000 to 2022.
View Article and Find Full Text PDFJ Med Virol
January 2025
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
The cell cycle is governed by kinase activity that coordinates progression through a series of regulatory checkpoints, preventing the division of damaged cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple genes that modulate or co-opt the activity of these kinases, shaping the cellular environment to promote viral persistence. By advancing the cell cycle, KSHV facilitates latent replication and subsequent transmission of viral genomes to daughter cells, while also contributing to the establishment of multiple cancer types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!