Diagnosing Alzheimer's disease (AD) through pathological markers is typically costly and invasive. This study aims to find a noninvasive, cost-effective method using portable electroencephalography (EEG) to detect changes in AD-related biomarkers in cerebrospinal fluid (CSF). A total of 102 patients, both with and without AD-related biomarker changes (amyloid beta and phosphorylated tau), were recorded using a 2-minute resting-state portable EEG. A machine-learning algorithm then analyzed the EEG data to identify these biomarker changes. The results showed that the machine learning model could distinguish patients with AD-related biomarker changes, achieving 68.1% accuracy (AUROC 0.75) for amyloid beta and 71.2% accuracy (AUROC 0.77) for phosphorylated tau, with gamma activities being key features. When excluding cases with idiopathic normal pressure hydrocephalus, accuracy improved to 74.1% (AUROC 0.80) for amyloid beta and 73.1% (AUROC 0.80) for phosphorylated tau. This study suggests that portable EEG combined with machine learning is a promising noninvasive and cost-effective tool for early AD-related pathological marker screening, which could enhance neurophysiological understanding and diagnostic accessibility.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-86449-2DOI Listing

Publication Analysis

Top Keywords

phosphorylated tau
16
machine learning
12
biomarker changes
12
amyloid beta
12
cerebrospinal fluid
8
portable electroencephalography
8
noninvasive cost-effective
8
patients ad-related
8
ad-related biomarker
8
portable eeg
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!