The performance of heterogeneous catalysis, specifically photochemical and electrochemical hydrogen evolution reaction (HER) fundamentally relies upon the prudent choice of catalytic systems with ideal optoelectronic and surface properties. Progressive research in materials processing has hinted at the large-scale applicability of two-dimensional (2D) materials for achieving higher activity in the HER process. Among 2D materials, transition metal chalcogenides (TMCs) have emerged as the advanced materials to enhance the rate of HER on account of their layered structure and chalcogen-sites that exhibit favorable hydrogen binding energies. Developing quantum dots (QDs) is the state-of-the-art methodological approach to tuning the physicochemical properties of TMCs. Herein, we aim to encompass the latest advancements in the TMCs QDs for green hydrogen upscaling with special attention given to the comprehensive understanding of physicochemical properties and experimental benchmarks. Furthermore, we have accounted the major challenges associated with the exploitation of TMCs QDs in HER operations and future perspectives for subscribing to the overall water splitting for hydrogen synthesis in the light of TMCs QDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/adaafa | DOI Listing |
Nanotechnology
January 2025
Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
The performance of heterogeneous catalysis, specifically photochemical and electrochemical hydrogen evolution reaction (HER) fundamentally relies upon the prudent choice of catalytic systems with ideal optoelectronic and surface properties. Progressive research in materials processing has hinted at the large-scale applicability of two-dimensional (2D) materials for achieving higher activity in the HER process. Among 2D materials, transition metal chalcogenides (TMCs) have emerged as the advanced materials to enhance the rate of HER on account of their layered structure and chalcogen-sites that exhibit favorable hydrogen binding energies.
View Article and Find Full Text PDFSmall
August 2024
College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, P. R. China.
Quantum dots (QDs) colloidal nanocrystals are attracting enduring interest by scientific communities for solar energy conversion due to generic physicochemical merits including substantial light absorption coefficient, quantum confinement effect, enriched catalytically active sites, and tunable electronic structure. However, photo-induced charge carriers of QDs suffer from ultra-short charge lifespan and poor stability, rendering controllable vectorial charge modulation and customizing robust and stable QDs artificial photosystems challenging. Herein, tailor-made oppositely charged transition metal chalcogenides quantum dots (TMCs QDs) and MXene quantum dots (MQDs) are judiciously harnessed as the building blocks for electrostatic layer-by-layer assembly buildup on the metal oxides (MOs) framework.
View Article and Find Full Text PDFInorg Chem
November 2023
College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China.
Transition-metal chalcogenide quantum dots (TMC QDs) show great promise in artificial photosynthesis for excellent light-harvesting capability. Nonetheless, TMC QDs have limitations of ultrafast charge recombination rate, sluggish carrier migration kinetics, and generic photocorrosion, retarding their widespread applications. To solve these obstacles, herein, we demonstrate the stimulation of charge migration over TMC QDs with the aid of nonconjugated insulating polymer and graphene (GR) for a versatile photoredox selective organic transformation.
View Article and Find Full Text PDFInorg Chem
October 2023
College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou 350108, Fujian, China.
Transition-metal chalcogenide quantum dots (TMCs QDs) exhibit emerging potential in the field of solar energy conversion due to large absorption coefficients for light harvesting, quantum size effect, and abundant active sites. However, fine-tuning the photoinduced charge carrier over TMCs QDs to manipulate the directional charge-transfer pathway remains challenging, considering their ultrashort charge lifetime and slow charge-transfer kinetics. To this end, herein, MoS/PDDA/TMCs QDs heterostructures were exquisitely designed by a simple and green electrostatic self-assembly strategy under ambient conditions, wherein tailor-made negatively charged TMCs QDs stabilized by mercaptoacetic acid (MAA) were precisely self-assembled on the positively charged polydiallyl dimethylammonium chloride (PDDA)-modified MoS nanoflowers (NFs), forming a well-defined three-dimensional heterostructured nanoarchitecture.
View Article and Find Full Text PDFInorg Chem
November 2022
College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province350108, China.
Transition-metal chalcogenides (TMCs) have received enormous attention by virtue of their large light absorption coefficient, abundant catalytically active sites, and markedly reduced spatially vectorial charge-transfer distance originating from generic structural merits. However, the controllable construction of TMC-based heterostructured photosystems for photocatalytic carbon dioxide (CO) reduction is retarded by the ultrashort charge lifetime, sluggish charge-transfer kinetics, and low target product selectivity. Herein, we present the rational design of two-dimensional (2D)/zero-dimensional (0D) heterostructured CO reduction photosystems by an electrostatic self-assembly strategy, which is enabled by precisely anchoring CsPbBr quantum dots (QDs) on the 2D TMC (CdInS, ZnInS, InS) frameworks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!