The excessive buildup of neurotoxic α-synuclein plays a pivotal role in the pathogenesis of Parkinson's disease, highlighting the urgent need for innovative therapeutic strategies to promote α-synuclein clearance, particularly given the current lack of disease-modifying treatments. The glymphatic system, a recently identified perivascular fluid transport network, is crucial for clearing neurotoxic proteins. This review aims to synthesize current knowledge on the role of the glymphatic system in α-synuclein clearance and its implications for the pathology of Parkinson's disease while emphasizing potential therapeutic strategies and areas for future research. The review begins with an overview of the glymphatic system and details its anatomical structure and physiological functions that facilitate cerebrospinal fluid circulation and waste clearance. It summarizes emerging evidence from neuroimaging and experimental studies that highlight the close correlation between the glymphatic system and clinical symptom severity in patients with Parkinson's disease, as well as the effect of glymphatic dysfunction on α-synuclein accumulation in Parkinson's disease models. Subsequently, the review summarizes the mechanisms of glymphatic system impairment in Parkinson's disease, including sleep disturbances, aquaporin-4 impairment, and mitochondrial dysfunction, all of which diminish glymphatic system efficiency. This creates a vicious cycle that exacerbates α-synuclein accumulation and worsens Parkinson's disease. The therapeutic perspectives section outlines strategies for enhancing glymphatic activity, such as improving sleep quality and pharmacologically targeting aquaporin-4 or its subcellular localization. Promising interventions include deep brain stimulation, melatonin supplementation, γ-aminobutyric acid modulation, and non-invasive methods (such as exercise and bright-light therapy), multisensory γ stimulation, and ultrasound therapy. Moreover, identifying neuroimaging biomarkers to assess glymphatic flow as an indicator of α-synuclein burden could refine Parkinson's disease diagnosis and track disease progression. In conclusion, the review highlights the critical role of the glymphatic system in α-synuclein clearance and its potential as a therapeutic target in Parkinson's disease. It advocates for further research to elucidate the specific mechanisms by which the glymphatic system clears misfolded α-synuclein and the development of imaging biomarkers to monitor glymphatic activity in patients with Parkinson's disease. Findings from this review suggest that enhancing glymphatic clearance is a promising strategy for reducing α-synuclein deposits and mitigating the progression of Parkinson's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/NRR.NRR-D-24-00764 | DOI Listing |
Metab Brain Dis
January 2025
Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Huai'an Hospital Affiliated to Yangzhou University, The Fifth People's Hospital of Huai'an), 1 Huaihe East Road, Huaiyin District, Huai'an City, Jiangsu Province, China.
Ginkgolide B (GB) is a bioactive constituent found in Ginkgo biloba leaves that has been long recognized as a protective agent against many neurological disorders. Our study aimed to examine the effect of GB in an in vitro Parkinson's disease (PD) model and to investigate its neuroprotective mechanism as a primary objective. SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium (MPP) to act as a PD-like model of neuronal damage.
View Article and Find Full Text PDFMov Disord Clin Pract
January 2025
Department of Computer Science, University of Verona, Verona, Italy.
Background: Axial postural abnormalities (APAs) are frequent and disabling axial symptoms of Parkinson's disease (PD). Image-based measurement is considered the gold standard but may not accurately detect the true severity of APAs because these symptoms can appear or get worse under dynamic conditions.
Objective: The aim was to evaluate quantitative changes in APAs degree during prolonged standing and walking in both single- and dual-task conditions (motor + cognitive).
Eur J Neurol
February 2025
1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.
Background: The p.A53T variant in the SNCA gene was considered, until recently, to be the only SNCA variant causing familial Parkinson's disease (PD) in the Greek population. We identified a novel heterozygous p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!