Objectives: We propose a multi-feature fusion model based on manually extracted features and deep learning features from endoscopic images for grading rebleeding risk of peptic ulcers.

Methods: Based on the endoscopic appearance of peptic ulcers, color features were extracted to distinguish active bleeding (Forrest I) from non-bleeding ulcers (Forrest II and III). The edge and texture features were used to describe the morphology and appearance of the ulcers in different grades. By integrating deep features extracted from a deep learning network with manually extracted visual features, a multi-feature representation of endoscopic images was created to predict the risk of rebleeding of peptic ulcers.

Results: In a dataset consisting of 3573 images from 708 patients with Forrest classification, the proposed multi-feature fusion model achieved an accuracy of 74.94% in the 6-level rebleeding risk classification task, outperforming the experienced physicians who had a classification accuracy of 59.9% (<0.05). The F1 scores of the model for identifying Forrest Ib, IIa, and III ulcers were 90.16%, 75.44%, and 77.13%, respectively, demonstrating particularly good performance of the model for Forrest Ib ulcers. Compared with the first model for peptic ulcer rebleeding classification, the proposed model had improved F1 scores by 5.8%. In the simplified 3-level risk (high-risk, low-risk, and non-endoscopic treatment) classification task, the model achieved F1 scores of 93.74%, 81.30%, and 73.59%, respectively.

Conclusions: The proposed multi-feature fusion model integrating deep features from CNNs with manually extracted visual features effectively improves the accuracy of rebleeding risk classification for peptic ulcers, thus providing an efficient diagnostic tool for clinical assessment of rebleeding risks of peptic ulcers.

Download full-text PDF

Source
http://dx.doi.org/10.12122/j.issn.1673-4254.2025.01.23DOI Listing

Publication Analysis

Top Keywords

fusion model
12
manually extracted
12
deep learning
12
rebleeding risk
12
extracted visual
8
features
8
visual features
8
features deep
8
learning features
8
peptic ulcers
8

Similar Publications

Multimodal sentiment analysis (MSA) aims to use a variety of sensors to obtain and process information to predict the intensity and polarity of human emotions. The main challenges faced by current multi-modal sentiment analysis include: how the model extracts emotional information in a single modality and realizes the complementary transmission of multimodal information; how to output relatively stable predictions even when the sentiment embodied in a single modality is inconsistent with the multi-modal label; how can the model ensure high accuracy when a single modal information is incomplete or the feature extraction performance not good. Traditional methods do not take into account the interaction of unimodal contextual information and multi-modal information.

View Article and Find Full Text PDF

Nanoparticles have great potential for the application in new energy and aerospace fields. The distribution of nanoparticle sizes is a critical determinant of material properties and serves as a significant parameter in defining the characteristics of zero-dimensional nanomaterials. In this study, we proposed HRU-Net, an enhancement of the U-Net model, featuring multi-level semantic information fusion.

View Article and Find Full Text PDF

Titanium alloy is known for its low thermal conductivity, small elastic modulus, and propensity for work hardening, posing challenges in predicting surface quality post high-speed milling. Since surface quality significantly influences wear resistance, fatigue strength, and corrosion resistance of parts, optimizing milling parameters becomes crucial for enhancing service performance. This paper proposes a milling parameter optimization method utilizing the snake algorithm with multi-strategy fusion to improve surface quality.

View Article and Find Full Text PDF

Hypoxia-triggered ERRα acetylation enhanced its oncogenic role and promoted progression of renal cell carcinoma by coordinating autophagosome-lysosome fusion.

Cell Death Dis

January 2025

Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China.

Estrogen-related receptor α (ERRα) is dysregulated in many types of cancer and exhibits oncogenic activity by promoting tumorigenesis and metastasis of cancer cells. However, its defined role in renal cell carcinoma (RCC) has not been fully elucidated. To reveal the biological function of ERRα and determine the underlying regulatory mechanism in RCC, the quantitative proteomics analysis and mechanism investigation were conducted.

View Article and Find Full Text PDF

Target tracking techniques in the UAV perspective utilize UAV cameras to capture video streams and identify and track specific targets in real-time. Deep learning UAV target tracking methods based on the Siamese family have achieved significant results but still face challenges regarding accuracy and speed compatibility. In this study, in order to refine the feature representation and reduce the computational effort to improve the efficiency of the tracker, we perform feature fusion in deep inter-correlation operations and introduce a global attention mechanism to enhance the model's field of view range and feature refinement capability to improve the tracking performance for small targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!