Background: Caffeic acid phenethyl ester (CAPE) is the main bioactive component of poplar type propolis. We previously reported that treatment with caffeic acid phenethyl ester (CAPE) suppressed the cell proliferation, tumor growth, as well as migration and invasion of prostate cancer (PCa) cells via inhibition of signaling pathways of AKT, c-Myc, Wnt and EGFR. We also demonstrated that combined treatment of CAPE and docetaxel altered the genes involved in glycolysis and tricarboxylic acid (TCA) cycle. We therefore suspect that CAPE treatment may interfere glucose metabolism in PCa cells.
Methods: Seahorse Bioenergetics platform was applied to analyzed the extra cellular acidification rate (ECAR) and oxygen consumption rate (OCR) of PCa cells under CAPE treatment. UPLC-MSMS with Multiple Reaction Monitoring (MRM), PCR, and western blot were used to analyze the effects of CAPE on metabolites, genes, and proteins involved in glycolysis, TCA cycle and pentose phosphate pathway in PCa cells. Flow cytometry and ELISA were used to determine the level of reactive oxygen species in PCa cells being treated with CAPE.
Results: Seahorse Bioenergetics analysis revealed that ECAR, glycolysis, OCR, and ATP production were elevated in C4-2B cells under CAPE treatment. Protein levels of glucose-6-phosphate dehydrogenase (G6PD), phosphogluconate dehydrogenase (PGD), glutaminase (GLS), phospho-AMPK Thr172 as well as abundance of pyruvate, lactate, ribulose-5-phosphate, and sedoheptulose-7-phosphate were increased in CAPE-treated C4-2B cells. ROS level decreased 48 h after treatment with CAPE. Co-treatment of AMPK inhibitor with CAPE exhibited additive growth inhibition on PCa cells.
Conclusions: Our study indicated that PCa cells attempted to overcome the CAPE-induced stress by upregulation of glycolysis and G6PD but failed to impede the growth inhibition caused by CAPE. Concurrent treatment of CAPE and inhibitors targeting glycolysis may be effective therapy for advanced PCa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12885-025-13477-6 | DOI Listing |
Am J Transl Res
December 2024
Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University Providence, RI 02903, USA.
Objectives: Prostate cancer (PCa) is a leading cause of cancer death in men worldwide. Approximately 30% of castrate-resistant PCa becomes refractory to therapy due to neuroendocrine differentiation (NED) that is present in <1% of de-novo tumors. First-in-class imipridone ONC201/TIC10 therapy has shown clinical activity against midline gliomas, neuroendocrine tumors, and PCa.
View Article and Find Full Text PDFMol Oncol
January 2025
Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
Transient receptor potential melastatin-4 (TRPM4) ion channel expression is upregulated in prostate cancer (PCa), contributing to increased cell proliferation, migration, adhesion, epithelial-to-mesenchymal transition, cell cycle shift, and alterations of intracellular Ca signaling. GEO2R platform analysis of messenger RNA (mRNA) expression of ~ 6350 genes in normal and malignant prostate tissue samples from 15 PCa patients demonstrates that TRPM4 expression is upregulated sixfold and is among the most significantly upregulated genes in PCa. We find that absence of TRPM4 reduced PCa tumor spheroid size and decreased PCa tumor spheroid outgrowth.
View Article and Find Full Text PDFCell Death Discov
January 2025
Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China.
Gamma-interferon-induced lysosomal thiol reductase (GILT), known for catalyzing disulfide bond reduction, is involved in various physiological processes. While the involvement of GILT in the development of various tumors has been demonstrated, the mechanisms underlying its regulation in prostate cancer (PCa) are not fully understood. In the present study, we confirmed that GILT was significantly upregulated in PCa and facilitated tumor metastasis.
View Article and Find Full Text PDFBMC Cancer
January 2025
Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan.
Background: Caffeic acid phenethyl ester (CAPE) is the main bioactive component of poplar type propolis. We previously reported that treatment with caffeic acid phenethyl ester (CAPE) suppressed the cell proliferation, tumor growth, as well as migration and invasion of prostate cancer (PCa) cells via inhibition of signaling pathways of AKT, c-Myc, Wnt and EGFR. We also demonstrated that combined treatment of CAPE and docetaxel altered the genes involved in glycolysis and tricarboxylic acid (TCA) cycle.
View Article and Find Full Text PDFMol Med
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Background: A close relationship exists between castration-resistant prostate cancer (CRPC) and histidine metabolism by gut microbes. However, the effects of the histidine metabolite imidazole propionate (IMP) on prostate cancer (PCa) and its underlying mechanisms are not well understood.
Methods: We first assessed the effects of IMP on cell proliferation and migration at the cellular level.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!