Glucose-6-phosphate dehydrogenase (G6PD) is an essential enzyme in the pentose phosphate pathway (PPP), a critical glucose metabolism pathway linked to cancer cell proliferation and metastasis. Inhibiting the PPP presents a promising approach to cancer treatment. The G6PD enzyme structure was obtained from the Protein Data Bank (PDB). The active site responsible for NADP+ binding was identified and used for structure-based pharmacophore design. This pharmacophore model was applied to the ZINC database to screen for small molecules. Molecular docking was accomplished using AutoDock Vina, and protein-ligand interactions were analyzed. Additionally, compounds were validated based on in silico ADMET properties to select the most promising candidates. A comprehensive screening and docking procedure identified several potential G6PD inhibitors. These compounds showed favorable interactions with the active site and met the criteria for optimal ADMET properties. The newly proposed G6PD inhibitors, with their potential to revolutionize cancer therapy, could serve as lead molecules for further research and development, inspiring the audience about the possibilities in cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1615/CritRevOncog.2024056445 | DOI Listing |
PLoS One
January 2025
Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Malmö, Sweden.
The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.
View Article and Find Full Text PDFBMC Cancer
January 2025
Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan.
Background: Caffeic acid phenethyl ester (CAPE) is the main bioactive component of poplar type propolis. We previously reported that treatment with caffeic acid phenethyl ester (CAPE) suppressed the cell proliferation, tumor growth, as well as migration and invasion of prostate cancer (PCa) cells via inhibition of signaling pathways of AKT, c-Myc, Wnt and EGFR. We also demonstrated that combined treatment of CAPE and docetaxel altered the genes involved in glycolysis and tricarboxylic acid (TCA) cycle.
View Article and Find Full Text PDFCrit Rev Oncog
January 2025
Bioinformatics, Genomics and Proteomics, University of California, Irvine, CA, USA.
Glucose-6-phosphate dehydrogenase (G6PD) is an essential enzyme in the pentose phosphate pathway (PPP), a critical glucose metabolism pathway linked to cancer cell proliferation and metastasis. Inhibiting the PPP presents a promising approach to cancer treatment. The G6PD enzyme structure was obtained from the Protein Data Bank (PDB).
View Article and Find Full Text PDFLife Sci
February 2025
Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China. Electronic address:
Diabetes Res Clin Pract
January 2025
Leumit Research Institute, Leumit Health Services, Tel-Aviv, Israel; Adelson School of Medicine, Ariel University, Ariel, Israel.
Aims: To assess the impact of Glucose-6-phosphate dehydrogenase (G6PD) deficiency, an enzymatic deficiency prevalent in individuals of African or Asian descent, on Hemoglobin A1c (HbA1c) levels, diabetes medication purchases, and the cumulative incidence of diabetes related complications.
Methods: A large cohort study was conducted within a national health organization, comparing 3,913 G6PD-deficient patients to a matched control group without G6PD deficiency over two decades. The main measures and outcomes were the HbA1c levels, patterns of diabetes medication purchases, and the incidence of severe diabetes-related complications.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!