Objective: The purpose of this research was to investigate the role of extracellular vesicles derived from lung cancer stem cells (lung CSCs-EVs) in lung cancer and to explore their potential mechanisms.
Methods: Lung CSCs were first isolated and verified using flow cytometry and RT-qPCR assays. Lung CSCs-EVs were extracted through ultracentrifugation and further characterized using transmission electron microscopy and Western blotting. The interaction between lung CSCs-EVs and lung cancer cells was observed through PKH67 staining. Subsequently, we analyzed the differentially expressed genes in lung CSCs using bioinformatics data analysis and evaluated the prognostic value of ZNF280B in lung cancer with the Kaplan-Meier Plotter. RT-qPCR was utilized to assess the mRNA expression levels of these genes, while Western blotting was used to evaluate the protein expression levels of ZNF280B and P53. Next, CCK-8 and colony formation assays were conducted to assess the effects of lung CSCs-EVs and ZNF280B on cancer cell proliferation, migration (via wound healing assay), and invasion (using transwell assay). Additionally, subcutaneous tumor-bearing experiments in nude mice were performed to evaluate the roles of lung CSCs-EVs in lung cancer progression .
Results: The results indicated that lung CSCs-EVs accelerated the progression of lung cancer. Mechanistically, these lung CSCs-EVs transferred ZNF280B into cancer cells, leading to the inhibition of P53 expression.
Conclusions: In summary, the manuscript first describes the molecular mechanism by which lung CSCs-EVs promote pro-cancer functions in lung cancer through the ZNF280B/P53 axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15384047.2025.2450849 | DOI Listing |
J Breath Res
January 2025
School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong, 266003, CHINA.
Lung cancer is one of the most common malignancy in the world, and early detection of lung cancer remains a challenge. The exhaled breath condensate (EBC) from lung and trachea can be collected totally noninvasively. In this study, our aim is to identify differential metabolites between non-small cell lung cancer (NSCLC) and control EBC samples and discriminate NSCLC group from control group by orthogonal projections to latent structures-discriminant analysis (OPLS-DA) models.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Public Health, Capital Medical University, Beijing, 100069, P. R. China.
Substantial epidemiological evidence suggests a significant correlation between particulate matter 2.5 (PM) and lung cancer. However, the mechanism underlying this association needs to be further elucidated.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.
A previous study classifies solid tumors based on collagen deposition and immune infiltration abundance, identifying a refractory subtype termed armored & cold tumors, characterized by elevated collagen deposition and diminished immune infiltration. Beyond its impact on immune infiltration, collagen deposition also influences tumor angiogenesis. This study systematically analyzes the association between immuno-collagenic subtypes and angiogenesis across diverse cancer types.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 2112 Cyprus.
Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Research Institute of the, McGill University Health Centre, Montreal, QC, Canada.
The increasing shift from cannabis smoking to cannabis vaping is largely driven by the perception that vaping to form an aerosol represents a safer alternative to smoking and is a form of consumption appealing to youth. Herein, we compared the chemical composition and receptor-mediated activity of cannabis smoke extract (CaSE) to cannabis vaping extract (CaVE) along with the biological response in human bronchial epithelial cells. Chemical analysis using HPLC and GC/MS revealed that cannabis vaping aerosol contained fewer toxicants than smoke; CaSE and CaVE contained teratogens, carcinogens, and respiratory toxicants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!