Regional blood flow within the brain is tightly coupled to regional neuronal activity, a process known as neurovascular coupling (NVC). In this study, we demonstrate the striking role of SUR2- and Kir6.1-dependent ATP-sensitive potassium (K) channels in control of NVC in the sensory cortex of conscious mice, in response to mechanical stimuli. We demonstrate that either globally increased (pinacidil-activated) or decreased (glibenclamide-inhibited) K activity markedly disrupts NVC; pinacidil-activation is capable of completely abolishing stimulus-evoked cortical hemodynamic responses, while glibenclamide slows and reduces the response. The response is similarly slowed and reduced in SUR2 KO animals, while animals expressing gain-of-function (GOF) mutations in Kir6.1, which underlie Cantú syndrome, exhibit baseline reduction of NVC as well as increased sensitivity to pinacidil. In revealing the dramatic effects of either increasing or decreasing SUR2/Kir6.1-dependent K activity on NVC, whether pharmacologically or genetically induced, the study has important implications both for monogenic K channel diseases and for more common brain pathologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748405PMC
http://dx.doi.org/10.1177/0271678X251313906DOI Listing

Publication Analysis

Top Keywords

neurovascular coupling
8
atp-sensitive potassium
8
potassium channels
8
nvc
5
control neurovascular
4
coupling atp-sensitive
4
channels regional
4
regional blood
4
blood flow
4
flow brain
4

Similar Publications

State-dependent neurovascular modulation induced by transcranial ultrasound stimulation.

Med Biol Eng Comput

January 2025

School of Biomedical Engineering, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai, 200030, Shanghai, China.

Previous studies reported baseline state-dependent effects on neural and hemodynamic responses to transcranial ultrasound stimulation. However, due to neurovascular coupling, neither neural nor hemodynamic baseline alone can fully explain the ultrasound-induced responses. In this study, using a general linear model, we aimed to investigate the roles of both neural and hemodynamic baseline status as well as their interactions in ultrasound-induced responses.

View Article and Find Full Text PDF

Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies.

ACS Appl Mater Interfaces

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.

The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network.

View Article and Find Full Text PDF

The complementary strengths of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have driven extensive research into integrating these two noninvasive modalities to better understand the neural mechanisms underlying cognitive, sensory, and motor functions. However, the precise neural patterns associated with motor functions, especially imagined movements, remain unclear. Specifically, the correlations between electrophysiological responses and hemodynamic activations during executed and imagined movements have not been fully elucidated at a whole-brain level.

View Article and Find Full Text PDF

Neuroimaging methods rely on models of neurovascular coupling that assume hemodynamic responses evolve seconds after changes in neural activity. However, emerging evidence reveals noncanonical BOLD (blood oxygen level dependent) responses that are delayed under stress and aberrant in neuropsychiatric conditions. To investigate BOLD coupling to resting-state fluctuations in neural activity, we simultaneously recorded EEG and fMRI in people with schizophrenia and psychiatrically unaffected participants.

View Article and Find Full Text PDF

Modeling of Blood Flow Dynamics in Rat Somatosensory Cortex.

Biomedicines

December 2024

Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland.

The cerebral microvasculature forms a dense network of interconnected blood vessels where flow is modulated partly by astrocytes. Increased neuronal activity stimulates astrocytes to release vasoactive substances at the endfeet, altering the diameters of connected vessels. Our study simulated the coupling between blood flow variations and vessel diameter changes driven by astrocytic activity in the rat somatosensory cortex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!