Improving breast cancer treatments using pharmacomicrobiomics.

mBio

Center for Gastrointestinal Biology and Disease and Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Published: January 2025

Tamoxifen is the mainstay treatment for estrogen-positive breast cancer for over half a century. However, a significant proportion of patients experience disease recurrence due to treatment failure attributed to various factors, including disease pathology, genetics, and drug metabolism. Alam et al. introduce gut microbiota as a key factor influencing tamoxifen pharmacokinetics (Y. Alam, S. Hakopian, L. Ortiz de Ora, I. Tamburini, et al., mBio 16:e01679-24, 2024, https://doi.org/10.1128/mbio.01679-24). The authors present compelling evidence that functional differences in the gut microbiota, specifically the bacterial enzyme β-glucuronidase, leads to inter-individual variability in systemic exposure of tamoxifen, affecting drug efficacy. This study provides novel insights into the impact of the gut microbiota on tamoxifen pharmacokinetics, the latest example of how pharmacomicrobiomics, or the study of drug-microbe interactions, can enhance precision medicine for numerous diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1128/mbio.03422-24DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
breast cancer
8
tamoxifen pharmacokinetics
8
improving breast
4
cancer treatments
4
treatments pharmacomicrobiomics
4
tamoxifen
4
pharmacomicrobiomics tamoxifen
4
tamoxifen mainstay
4
mainstay treatment
4

Similar Publications

Biomimetic wrinkled prebiotic microspheres with enhanced intestinal retention for hyperphosphatemia and vascular calcification.

Sci Adv

January 2025

Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.

It is urgent for patients with chronic kidney disease (CKD) to develop a robust and facile therapy for effective control of serum phosphate and reasonable regulation of gut microbiota, which are aiming to prevent cardiovascular calcification and reduce cardiovascular complications. Here, bioinspired by intestinal microstructures, we developed biomimetic wrinkled prebiotic-containing microspheres with enhanced intestinal retention and absorption for reducing hyperphosphatemia and vascular calcification of CKD model rats. The resultant CSM@5 microspheres exhibited favorable phosphate binding capacity in vitro and could effectively reduce serum concentration of phosphorous in vivo.

View Article and Find Full Text PDF

Mouse models for metabolic health research: molecular mechanism of exercise effects on health improvement through adipose tissue remodelling.

J Physiol

January 2025

Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.

Exercise provides health benefits to multiple metabolic tissues through complex biological pathways and interactions between organs. However, investigating these complex mechanisms in humans is still limited, making mouse models extremely useful for exploring exercise-induced changes in whole-body metabolism and health. In this review, we focus on gaining a broader understanding of the metabolic phenotypes and molecular mechanisms induced by exercise in mouse models.

View Article and Find Full Text PDF

This research explored the effect of high-fiber diet based on gut microbiota on chronic heart failure (HF) patients. Chronic HF patients, who had undergone a dietary survey indicating a daily dietary fiber intake of less than 15g/d were divided into the control and study groups (n = 50). In addition to conventional heart failure treatment, the study group received dietary guidance, while the control group did not receive any dietary guidance and maintained their usual low-fiber dietary habits.

View Article and Find Full Text PDF

Introduction: Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) are chronic disorders of the gastrointestinal tract associated with gut microbiota dysbiosis and inflammation. Serum-derived bovine immunoglobulin (SBI) is used to manage IBS and IBD and has shown prebiotic-like effects in ex vivo models. Re-establishing a healthy gut microbiome with novel treatments like SBI could help treat the underlying causes of these diseases leading to higher and sustained patient response.

View Article and Find Full Text PDF

Application of Chinese Medicine in Treatment of Ulcerative Colitis and Elucidation of Relevant Mechanisms.

Chin J Integr Med

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China.

Ulcerative colitis (UC) is a chronic, non-specific intestinal disease of unknown etiology, with high incidence rates worldwide. At present, Western medicine treatments have been associated with more adverse effects and poor efficacy. Chinese medicine (CM) is commonly used as an adjuvant treatment for the unique advantages in regulating immune function, repairing intestinal mucosa, and alleviating intestinal inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!