Atomic-scale understanding of important geochemical processes including sorption, dissolution, nucleation, and crystal growth is difficult to obtain from experimental measurements alone and would benefit from strong continuous progress in molecular simulation. To this end, we present a reactive neural network potential-based molecular dynamics approach to simulate the interaction of aqueous ions on mineral surfaces in contact with liquid water, taking Fe(II) on hematite(001) as a model system. We show that a single neural network potential predicts rate constants for water exchange for aqueous Fe(II) and for the exergonic chemisorption of aqueous Fe(II) on hematite(001) in good agreement with experimental observations. The neural network potential developed herein allows one to converge free energy profiles and transmission coefficients at density functional theory-level accuracy outperforming state-of-the-art classical force field potentials. This suggests that machine learning potential molecular dynamics should become the method of choice for atomistic studies of geochemical processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c03252 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!