Post-Docking Refinement of Peptide or Protein-RNA Complexes Using Thermal Titration Molecular Dynamics (TTMD): A Stability Insight.

J Chem Inf Model

Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy.

Published: January 2025

RNA-protein interactions drive and regulate fundamental cellular processes like transcription and translation. Despite being still limited, the growing body of structural data significantly contributes to the characterization of these interactions. However, RNA complexes involving proteins or peptides are not always available due to the structural determination challenges that this biopolymer entails. Consequently, modeling approaches like molecular docking are exploited to generate complexes relevant to structural and pharmaceutical purposes, including analysis of putative drug targets. Docking methods, despite their widespread adoption, are often hindered by limitations in scoring accuracy, which affects the ranking of the generated poses. Postdocking refining methods, including molecular dynamics (MD) approaches, have been developed to tackle this issue. Thermal Titration Molecular Dynamics (TTMD) is an enhanced sampling molecular dynamics technique that has been previously effectively applied to refine protein or RNA-small-molecule docking poses. This study presents the first application of TTMD to RNA-peptide complexes, validating this method on more complex systems and extending its applicability domain. Our findings showcase the capability of this technique to refine peptide-RNA docking poses, correctly identifying native binding modes among decoys for different pharmaceutically relevant targets.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.4c01393DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
16
thermal titration
8
titration molecular
8
dynamics ttmd
8
docking poses
8
molecular
5
post-docking refinement
4
refinement peptide
4
peptide protein-rna
4
complexes
4

Similar Publications

Molecular mechanisms of cis-oxygen bridge neonicotinoids to Apis mellifera Linnaeus chemosensory protein: Surface plasmon resonance, multiple spectroscopy techniques, and molecular modeling.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Honeybees, essential pollinators for maintaining biodiversity, are experiencing a sharp population decline, which has become a pressing environmental concern. Among the factors implicated in this decline, neonicotinoid pesticides, particularly those belonging to the fourth generation, have been the focus of extensive scrutiny due to their potential risks to honeybees. This study investigates the molecular basis of these risks by examining the binding interactions between Apis mellifera L.

View Article and Find Full Text PDF

Reline, which is composed of choline chloride and urea in a molar ratio of 1:2, is the first and most extensively studied deep eutectic solvent (DES). In certain applications, reline is blended with organic solvents, dimethyl sulfoxide (DMSO) in most cases, to gain improved properties. Therefore, it is crucial to have a profound understanding of the impact of DMSO on the dynamics and structures of the species in the binary mixtures.

View Article and Find Full Text PDF

Computational Insights into Membrane Disruption by Cell-Penetrating Peptides.

J Chem Inf Model

January 2025

Unit of Biophysics, Department of Biochemistry and Molecular Biology, Facultat de Medicina, Av. Can Domènech s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain.

Cell-penetrating peptides (CPPs) can translocate into cells without inducing cytotoxicity. The internalization process implies several steps at different time scales ranging from microseconds to minutes. We combine adaptive Steered Molecular Dynamics (aSMD) with conventional Molecular Dynamics (cMD) to observe nonequilibrium and equilibrium states to study the early mechanisms of peptide-bilayer interaction leading to CPPs internalization.

View Article and Find Full Text PDF

Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions.

View Article and Find Full Text PDF

The actin cytoskeleton regulates danger-associated molecular pattern signaling and PEP1 RECEPTOR1 internalization.

Plant Physiol

January 2025

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

In plants, cytoskeletal proteins assemble into dynamic polymers that play numerous roles in diverse fundamental cellular processes, including endocytosis, vesicle trafficking, and the spatial distribution of organelles and protein complexes. Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are perceived by the receptor-like kinases PEP RECEPTOR 1 (PEPR1) and PEPR2 to enhance innate immunity and inhibit root growth in Arabidopsis (Arabidopsis thaliana). To date, however, there is little evidence that the actin cytoskeleton of the host cell participates in DAMP-induced innate immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!