High-temperature and long-term sintering of β″-AlO solid electrolyte (Beta″ Alumina Solid Electrolyte, BASE) can easily cause NaO volatilization. It reduces the solid electrolyte (SE) quality, resulting in low ion conductivity of the electrolyte. It is also difficult to form uniform ionic channels. This work designs a simple nonaqueous precipitation through de-etherification heterogeneous polymerization reaction between optimal sodium source sodium ethoxide and aluminum isopropoxide to synthesize highly active precursor powders with Na-O-Al as the skeleton, effectively reducing the synthesis and sintering temperatures of β″-AlO solid electrolyte and minimizing the NaO volatilization. Importantly, residual organic groups and a low synthesis temperature of 1150 °C promote the formation of in situ carbon uniformly. In-situ carbon with a mass fraction of about 3.98% will form uniformly distributed ion transport channels with a diameter of 1-3 μm when sintering at 1580 °C. These channels ensure a migration rate of sodium ions and ion conductivity of β″-AlO solid electrolyte of 0.028 S/cm at 300 °C.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c04641DOI Listing

Publication Analysis

Top Keywords

solid electrolyte
20
β″-alo solid
12
nonaqueous precipitation
8
uniform ionic
8
ionic channels
8
nao volatilization
8
ion conductivity
8
electrolyte
6
solid
5
effects sodium
4

Similar Publications

Catalyst design plays a critical role in ensuring sustainable and effective energy conversion. Electrocatalytic materials need to be able to control active sites and introduce defects in both acidic and alkaline electrolytes. Furthermore, producing efficient catalysts with a distinct surface structure advances our comprehension of the mechanism.

View Article and Find Full Text PDF

Silicon is widely recognized as a promising anode material for all-solid-state batteries (ASSBs) due to exceptional specific capacity, abundant availability, and environmental sustainability. However, the considerable volume expansion and particle fragmentation of Si during cycling lead to significant performance degradation, limiting its practical application. Herein, the development of a pre-lithiated Si-based composite anode (c-LiSi) is presented, designed to address the key challenges faced by Si-based anodes, namely severe volume changes and low electrochemical stability.

View Article and Find Full Text PDF

Integrated system for electrolyte recovery, product separation, and CO capture in CO reduction.

Nat Commun

January 2025

School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou, 510006, China.

Challenges in CO capture, CO crossover, product separation, and electrolyte recovery hinder electrocatalytic CO reduction (COR). Here, we present an integrated electrochemical recovery and separation system (ERSS) with an ion separation module (ISM) between the anode and cathode of a water electrolysis system. During ERSS operation, protons from the anolyte flow through the anodic cation exchange membrane (CEM) into the ISM, acidifying the COR effluent electrolyte.

View Article and Find Full Text PDF

In this work, we investigate the development of polymer electrolytes for sodium batteries based on sulfonamide functional polymer nanoparticles (NaNPs). The synthesis of the polymer NaNPs is carried out by emulsion copolymerization of methyl methacrylate and sodium sulfonamide methacrylate in the presence of a crosslinker, resulting in particle sizes of 50 nm, as shown by electron microscopy. Then, gel polymer electrolytes are prepared by mixing polymer NPs and different organic plasticizers including carbonates, glymes, sulfolanes and ionic liquids.

View Article and Find Full Text PDF

Electrochromic materials were discovered in the 1960s when scientists observed reversible changes between the light and dark states in WO thin films under different voltages. Since then, researchers have identified various electrochromic material systems, including transition metal oxides, polymer materials, and small molecules. However, the electrochromic phenomenon has rarely been observed in non-metallic elemental substances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!