Strong and Fireproof Regenerated Wood a Combined Phosphorylation-Surface Nanofibrillation and Ionic Cross-Linking Strategy.

ACS Nano

Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.

Published: January 2025

To reduce the environmental impact of plastics, an increasing number of high-performance sustainable materials have emerged. Among them, wood-based high-performance structural materials have gained growing attention due to their outstanding mechanical and thermal properties. Here, we introduce phosphate groups onto the wood veneers for surface nanofibrillation, effectively altering both the molecular structure and surface morphology of wood, which enhances the interactions between wood veneers and endows the wood with excellent fire resistance properties. With these phosphorylated wood-based building blocks, "chemical welding" structural materials (CWSMs) obtained through chemical cross-linking exhibit excellent mechanical properties. The flexural strength of CWSM reaches 225 MPa, and the modulus reaches 16 GPa, surpassing those of various types of natural wood. At the same time, phosphorylation has endowed CWSM with excellent fire resistance, with a limiting oxygen index reaching 49%, making it completely noncombustible. More importantly, as a biomass-based structural material, CWSM exhibits mechanical, thermal, and fire resistance properties and degradability far superior to those of traditional petroleum-based plastics, making it an ideal candidate for plastic replacement.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c13857DOI Listing

Publication Analysis

Top Keywords

fire resistance
12
structural materials
8
mechanical thermal
8
wood veneers
8
excellent fire
8
resistance properties
8
wood
6
strong fireproof
4
fireproof regenerated
4
regenerated wood
4

Similar Publications

Recently biocementation has got attention of many researchers worldwide as one of the most potent techniques for sustainable construction. Several studies have been carried out worldwide on biocementation by urea hydrolysis. Biocementation by bacterially induced calcium carbonate precipitation by different bacterial species has been among the most widely researched areas in this field.

View Article and Find Full Text PDF

Layered Double Hydroxide Nanosheets Incorporated Hierarchical Hydrogen Bonding Polymer Networks for Transparent and Fire-Proof Ceramizable Coatings.

Nanomicro Lett

January 2025

Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361000, People's Republic of China.

In recent decades, annual urban fire incidents, including those involving ancient wooden buildings burned, transportation, and solar panels, have increased, leading to significant loss of human life and property. Addressing this issue without altering the surface morphology or interfering with optical behavior of flammable materials poses a substantial challenge. Herein, we present a transparent, low thickness, ceramifiable nanosystem coating composed of a highly adhesive base (poly(SSS-co-HEMA)), nanoscale layered double hydroxide sheets as ceramic precursors, and supramolecular melamine di-borate as an accelerator.

View Article and Find Full Text PDF

Comparing Hydrolysable and Condensed Tannins for Tannin Protein-Based Foams.

Polymers (Basel)

January 2025

Department of Land, Environment, Agriculture and Forestry, University of Padua, Viale dell'Università 16, 35020 Padua, Italy.

Tannin-based foams have gained attention as a potential bio-based alternative to conventional synthetic foams. Traditionally, namely condensed tannins (CT) have been used, leaving the potential of hydrolysable tannins (HT) largely unexplored. This study compared the performance of chestnut (HT) and quebracho (CT) in tannin-protein-based foams at different tannin ratios.

View Article and Find Full Text PDF

Comparison of Aging Performances and Mechanisms: Super-Durable Fire-Resistant "Xuan Paper" Versus Chinese Traditional Xuan Paper.

Molecules

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

Paper is a thin nonwoven material made from cellulose fibers as the main raw material together with some additives. Paper is highly flammable, leading to the destruction of countless precious ancient books, documents, and art works in fire disasters. In recent years, researchers have made a lot of efforts in order to obtain more durable and fire-retardant paper.

View Article and Find Full Text PDF

Correction: Kuklane et al. A Database of Static Thermal Insulation and Evaporative Resistance Values of Dutch Firefighter Clothing Items and Ensembles. 2022, , 1813.

Biology (Basel)

January 2025

Team Fire Service Science, Netherlands Academy of Crisis Management and Fire Service Science, Netherlands Institute for Public Safety, Zilverstraat 91, 2718 RP Zoetermeer, The Netherlands.

The original publication contained an erroneous data line in Appendix A, "Table A1 [...

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!