Ligand-functionalized InP-based quantum dots (QDs) have been developed as an innovative class of nontoxic photosensitizer suitable for antimicrobial applications, aimed at reducing or preventing pathogen transmission from one host to another via high contact surfaces. A hot injection method followed by functionalization via ligand exchange with 9-anthracene carboxylic acid (ACA) yielded the desired core/shell InP/ZnSe/ZnS QDs. Transmission electron microscopy (TEM) revealed these QDs to be uniform in size (∼3.2 nm), with light absorption across the entire visible spectrum (λ ∼550 nm). Under light excitation at 550 nm, the generation of singlet oxygen (O) was evidenced by its characteristic phosphorescence signal at 1278 nm, indicating successful energy transfer from the QDs to surface-anchored ACA ligands, in accordance with a type II mechanism for a photodynamically generated singlet oxygen. The InP/ZnSe/ZnS core/shell QDs were applied to cellulose via dip coating, and the resultant QDs-loaded material was assessed for antimicrobial photodynamic inactivation (aPDI) of both Gram-positive [methicillin-resistant (MRSA; ATCC-44), vancomycin-resistant (VRE; ATCC-2320)] and Gram-negative [multidrug-resistant (MDRAB; ATCC-1605), NDM-1 positive (KP; ATCC-2146)] bacteria under illumination (400-700 nm; 85 mW/cm; 90 min). The highest inactivation was observed for MRSA, achieving at least 99.999% inactivation (5 log units). Antiviral photodynamic inactivation on human coronavirus 229E (HCoV-229E) and feline calicivirus (FCV) demonstrated complete viral inactivation (to the detection limit). Cytotoxicity studies showed that the QDs are nontoxic to mammalian cells in the dark. Together, these results confirm the promising potential of ligand-functionalized InP-based QDs to be employed as nontoxic photosensitizers as materials in self-sterilizing surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.4c01467DOI Listing

Publication Analysis

Top Keywords

inp-based quantum
8
quantum dots
8
ligand-functionalized inp-based
8
singlet oxygen
8
photodynamic inactivation
8
qds
7
inactivation
5
dots photosensitizers
4
photosensitizers photodynamic
4
photodynamic antimicrobial
4

Similar Publications

We report an InP-based MMI combiner integrated array of 4 channel directly modulated 1.3 µm distributed feedback (DFB) lasers. Each laser channel in the array has an active DFB section and a passive distributed Bragg reflector (DBR) section.

View Article and Find Full Text PDF

Ligand-functionalized InP-based quantum dots (QDs) have been developed as an innovative class of nontoxic photosensitizer suitable for antimicrobial applications, aimed at reducing or preventing pathogen transmission from one host to another via high contact surfaces. A hot injection method followed by functionalization via ligand exchange with 9-anthracene carboxylic acid (ACA) yielded the desired core/shell InP/ZnSe/ZnS QDs. Transmission electron microscopy (TEM) revealed these QDs to be uniform in size (∼3.

View Article and Find Full Text PDF

High-performance, environmentally friendly indium phosphide (InP)-based quantum dots (QDs) are urgently needed to meet the demands of rapidly evolving display and lighting technologies. By adopting the highly efficient and cost-effective one-pot method and utilizing aluminum isopropoxide (AIP) as the Al source, a series of Al-doped InP/(Al)ZnS QDs with emission maxima ranging from 480 to 627 nm were synthesized. The photoluminescence quantum yield (PLQY) of the blue, green, yellow, orange, and red QDs, with emission peaks at 480, 509, 560, 600, and 627 nm, reached 34%, 62%, 86%, 96%, and 85%, respectively.

View Article and Find Full Text PDF

The limited operational lifetime of quantum-dot light-emitting diodes (QLEDs) poses a critical obstacle that must be addressed before their practical application. Specifically, cadmium-free InP-based QLEDs, which are environmentally benign, experience significant operational degradation due to challenges in charge-carrier confinement stemming from the composition of InP quantum dots (QDs). This study investigates the operational degradation of InP QLEDs and provides direct evidence of the degradation process.

View Article and Find Full Text PDF

Dipole Modulation Engineering Enhances Structural Order of PEDOT:PSS for Efficient and Stable InP-Based QLEDs.

ACS Appl Mater Interfaces

December 2024

School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.

Article Synopsis
  • Indium phosphide (InP)-based quantum dot light-emitting diodes (QLEDs) offer excellent color purity and brightness, making them ideal for future display technologies.
  • The performance limitations caused by the disordered structure of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) can be improved by embedding molybdenum oxide (MoO) nanoparticles, enhancing charge transport.
  • This modification increases the external quantum efficiency (EQE) significantly from 12.2% to 17.8% and improves device stability at high brightness levels, showcasing the benefits of dipole engineering for future lighting applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!