Ocean acidification and its regulating factors in the East China Sea off the Yangtze River estuary.

Mar Environ Res

Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.

Published: January 2025

This study examines the seasonal variations in carbonate system parameters in the East China Sea (ECS) off the Yangtze River estuary (YRE) and analyzes the contributions of anthropogenic CO₂ and eutrophication to acidification. Carbonate parameters data were collected during summer 2019 and combined winter 2011. During winter, acidification is primarily driven by rising atmospheric CO₂, with minimal impact from biological processes. In contrast, summer presents a different pattern: enhanced photosynthesis due to eutrophication in surface waters helps mitigate the acidification effects of atmospheric CO₂ increases, while in bottom waters, the combined pressures of atmospheric CO₂ and intensified aerobic respiration leads to more severe acidification. Notably, biological processes now contribute more to acidification than increasing atmospheric CO₂ in the bottom waters. Our projections indicate that the summer bottom waters will experience the most pronounced acidification, with average pH levels expected to decline from 8.04 to 7.82 and aragonite saturation state (Ω) values decreasing from 2.24 to 1.38 between 2000 and 2100. Additionally, our study indicates that winter acidification trends are also concerning, with pH only slightly higher than in summer bottom waters. The buffering capacity and the DIC:TA ratio play significant roles in determining the rate of future pH and Ω declines. The strong buffering capacity in summer surface waters mitigates the pH decline, while the low DIC:TA ratio results in a rapid drop in Ω.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2025.106960DOI Listing

Publication Analysis

Top Keywords

atmospheric co₂
16
bottom waters
16
east china
8
china sea
8
yangtze river
8
river estuary
8
winter acidification
8
biological processes
8
surface waters
8
summer bottom
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!