Neuropathic pain is a disorder affecting the somatosensory nervous system. However, this condition is also characterized by significant neuroinflammation, primarily involving CNS-resident non-neuronal cells. A promising target for developing new analgesics is histamine H receptor (HR); thus, we aimed to determine the influence of a novel HR antagonist/inverse agonist, E-98 (1-(7-(4-chlorophenoxy)heptyl)-3-methylpiperidine), on pain symptoms and glia activation in model of neuropathic pain in male mice (chronic constriction injury to the sciatic nerve). We investigated the effects of single intraperitoneal (i.p.) (1, 5, 10, 20 mg/kg) and intrathecal (i.th.) (10, 30, 60 µg/5 µL) E-98-injections on mechanical (von Frey) and thermal (cold plate, tail flick) stimuli. The effect of chronic E-98 (10 mg/kg, i.p.) treatment and its influence on glia activation within the lumbar spinal cord was investigated. The anti-inflammatory properties of E-98 (10 µM) were screened in primary microglial and astroglial cell cultures. We assessed the presence of HR within the spinal cord of control and neuropathic animals and in cell cultures. E-98 attenuated nociceptive responses in a dose- and time-dependent manner, and this effect is correlated with reduced microglia and increased astroglia activation. In vitro studies showed a decreased pro-inflammatory IL-6 level in both cell cultures. We observed co-localization of HR with spinal neurons, microglia, and astrocytes and in primary glial cell cultures. We suggest that an analgesic effect of E-98 is partially due to the modulation of glial activation. We explore a new mechanism of HR antagonists/inverse agonists analgesic action, bringing the potential benefits in pain management strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2025.117850DOI Listing

Publication Analysis

Top Keywords

cell cultures
16
neuropathic pain
12
histamine receptor
8
glia activation
8
spinal cord
8
pain
5
activation
5
e-98
5
receptor blockade
4
blockade alleviates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!