Toxic-induced cerebellar syndrome (TOICS) poses substantial neurological challenges, given its diverse causes and complex manifestations. Gold nanoparticles (AuNPs) have gained significant attention owing to enhanced biocompatibility for therapeutic interventions. We aimed to investigate the impacts of AuNPs on cerebellar cytomolecular, immunohistochemical and ultrastructural alterations in the context of phenytoin-experimentally induced TOICS. Thirty male albino rats were assigned randomly to three equal groups; control, phenytoin (PHT) and PHT+ AuNPs groups. Cerebellar sections were examined histopathologically, ultra-structurally and immunohistochemically for GFAP and p-Tau. Cerebellar tissues were evaluated for TNF-α, IL-1β, MDA, CAT, SOD and CREB mRNA. Our data confirmed observable amelioration of histopathological and ultrastructural cerebellar alterations of Purkinje and granule cells after AuNPs cotreatment. Histomorphometric measures revealed AuNPs-induced significant downregulation of p-Tau and GFAP immune-expression. Concurrently, TNF-α, IL-1β, MDA were significantly quenched in cerebellar tissues after AuNPs cotreatment, on contrary to notable restoration of CAT, SOD and CREB mRNA levels. These outcomes confirm that AuNPs hold promise as a therapeutic strategy for TOICS, warranting further exploration of their mechanisms and clinical applications in cerebellar disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tice.2025.102725 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, U.K.
Many different types of nanoparticles have been developed for photothermal therapy (PTT), but directly comparing their efficacy as heaters and determining how they will perform when localized at depth in tissue remains complex. To choose the optimal nanoparticle for a desired hyperthermic therapy, it is vital to understand how efficiently different nanoparticles extinguish laser light and convert that energy to heat. In this paper, we apply photothermal mass conversion efficiency (η ) as a metric to compare nanoparticles of different shapes, sizes, and conversion efficiencies.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States.
Gold nanoparticles can exhibit unique physical and chemical properties, such as plasmon resonances or photoluminescence. These nanoparticles have many atoms, which leads to high computational costs for density functional theory (DFT) calculations. In this work, we used the FLARE++ (fast learning of atomistic rare events) code and incorporated an active learning algorithm to construct force fields for gold thiolate-protected nanoclusters.
View Article and Find Full Text PDFPutrescine is a kind of physical diamine that is closely related to food deterioration and food quality safety. This study employs a novel fiber optic biosensor based on S-tapered and waist extension techniques, as well as localized surface plasmon resonance (LSPR), to detect putrescine accurately. The gold nanoparticles (AuNPs) are fixed on the fiber to excite LSPR.
View Article and Find Full Text PDFThe detection of lead ions (Pb) is crucial due to its harmful effects on health and the environment. In this article, what we believe to be a novel dielectric-metal hybrid structure localized surface plasmon resonance (LSPR) sensor for ultra-trace detection of Pb is proposed, featuring a zinc sulfide layer, silver nanodisks (Ag-disks), and graphene oxide (GO) covering the Ag-disks. The sensor works by detecting the variation of gold nanoparticles (AuNPs) on its surface when Pb cleaves a substrate strand linked to a DNAzyme, causing the AuNPs modified on the substrate strand to disperse.
View Article and Find Full Text PDFTalanta
January 2025
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. Electronic address:
Hepatocellular carcinoma (HCC) stands as a grave illness characterized by elevated death rates. Early identification plays a vital role in improving patient survival. Herein, a novel split-type dual-mode biosensor featuring with near-infrared photoelectronchemical (PEC) and colorimetric sensing characteristics was developed for the high-performance detection of HepG2 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!