Microalgae-based wastewater treatment could realize simultaneous nutrients recovery and CO sequestration. However, impacts of environmental microplastics (MPs) and antibiotic co-exposure on microalgal growth, nutrients removal, intracellular nitric oxide (NO) accumulation and subsequent nitrous oxide (NO) emission are unclarified, which could greatly offset the CO sequestration benefit. To reveal the potential impacts of environmental concentrations of MPs and antibiotic co-exposure on microalgal greenhouse gas mitigation, this study investigated the effects of representative MPs (PE, PVC, PA), antibiotic sulfamethoxazole (SMX), and nitrite (NO-N) in various combinations on attached Chlorella sorokiniana growth, nutrients removal, anti-oxidative responses, and NO emission originated from intracellular NO build-up. Microalgal biofilm growth was more inhibited under 10 μg/L MPs than 100 μg/L SMX, and MPs+SMX co-exposure displayed toxicity antagonism while MPs+MPs co-exposure caused toxicity synergism (up to 66 % growth inhibition). Extracellular polysaccharides content correlated well with microalgal biofilm density under various stresses, while SMX involved stresses displayed chlorophyll a content reduction. Microalgal assimilation and MPs adsorption contributed to nutrients removal, and phosphorus removal displayed less variance among different stresses (residual phosphorus <0.5 mg/L) than nitrogen. Intracellular NO conversion to NO almost doubled during the co-exposure processes, and NO emission under NO-N + PE+PVC co-exposure could offset the contribution of microalgal CO sequestration by as high as 176.2 %. Results of this study appealed for urgent concern regarding environmental MPs and antibiotic co-exposure on primary producers' growth characteristics and their greenhouse gas mitigation properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137223DOI Listing

Publication Analysis

Top Keywords

nutrients removal
12
attached chlorella
8
chlorella sorokiniana
8
nitrous oxide
8
oxide emission
8
impacts environmental
8
mps antibiotic
8
antibiotic co-exposure
8
co-exposure microalgal
8
growth nutrients
8

Similar Publications

Prescribed burning effects on carbon and nutrient cycling processes in peatlands of Greater Khingan Mountains, Northeast China.

Sci Total Environ

January 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, 130102 Changchun, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, 130102 Changchun, China. Electronic address:

Peatlands are significant global carbon sinks; however, their carbon storage functions are vulnerable to human activities. In the Greater Khingan Mountains of Northeast China, where forest and peatland ecosystems are interspersed extensively, prescribed burning is conducted annually on peatlands to prevent major forest fires. To investigate the effect of prescribed burning on carbon and nutrient cycling processes in peatlands, we conducted a three-year experiment in the Greater Khingan Mountains.

View Article and Find Full Text PDF

Microalgae-based wastewater treatment could realize simultaneous nutrients recovery and CO sequestration. However, impacts of environmental microplastics (MPs) and antibiotic co-exposure on microalgal growth, nutrients removal, intracellular nitric oxide (NO) accumulation and subsequent nitrous oxide (NO) emission are unclarified, which could greatly offset the CO sequestration benefit. To reveal the potential impacts of environmental concentrations of MPs and antibiotic co-exposure on microalgal greenhouse gas mitigation, this study investigated the effects of representative MPs (PE, PVC, PA), antibiotic sulfamethoxazole (SMX), and nitrite (NO-N) in various combinations on attached Chlorella sorokiniana growth, nutrients removal, anti-oxidative responses, and NO emission originated from intracellular NO build-up.

View Article and Find Full Text PDF

Impact of Botfly Parasitism on the Behavior of Mantled Howler Monkeys.

Am J Primatol

January 2025

Primate Behavioral Ecology Lab, Instituto de Neuro-etología, Universidad Veracruzana, Xalapa, México.

Parasitism, a widespread nutrient acquisition strategy among animals, results from a long evolutionary history where one species derives its metabolic needs from another. Parasites can significantly reduce host fitness, affecting reproduction, growth, and survivability. Vertebrate hosts exhibit defensive strategies against parasites, including "sickness behaviors" such as lethargy and self-grooming to remove ectoparasites.

View Article and Find Full Text PDF

Deciphering intricate associations between vigorous development and novel metabolic preferences of partial denitrification/anammox granular consortia within mainstream municipal wastewater.

Bioresour Technol

January 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China. Electronic address:

There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.

View Article and Find Full Text PDF

Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!