Discovery of CZY43 as a new small-molecule degrader of pseudokinase HER3.

Eur J Med Chem

State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd, Shanghai, 200032, China. Electronic address:

Published: January 2025

The pseudokinase HER3 emerges as a promising anti-cancer target, especially for HER2-driven breast cancer and EGFR-mediated non-small cell lung cancer. However, it is challenging to target HER3 by ATP-competitive small molecules because HER3 is catalytically impaired. Herein, we report the discovery of a series of HER3 degraders by connecting a HER3 binder bosutinib with a hydrophobic tag adamantane. The optimal compound CZY43 effectively induced HER3 degradation in dose- and time-dependent manners in breast cancer SKBR3 cells. Mechanistic studies revealed compound CZY43 to induce HER3 degradation via autophagy. Importantly, compound CZY43 potently inhibited HER3-dependent signaling, cancer cell growth and cell adhesion, and was more potent than bosutinib. This study further suggested that HER3 can be modulated by small-molecule degraders, and compound CZY43 can serve as a lead compound for further optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2025.117258DOI Listing

Publication Analysis

Top Keywords

compound czy43
16
her3
9
pseudokinase her3
8
breast cancer
8
her3 degradation
8
compound
5
discovery czy43
4
czy43 small-molecule
4
small-molecule degrader
4
degrader pseudokinase
4

Similar Publications

Discovery of CZY43 as a new small-molecule degrader of pseudokinase HER3.

Eur J Med Chem

January 2025

State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd, Shanghai, 200032, China. Electronic address:

The pseudokinase HER3 emerges as a promising anti-cancer target, especially for HER2-driven breast cancer and EGFR-mediated non-small cell lung cancer. However, it is challenging to target HER3 by ATP-competitive small molecules because HER3 is catalytically impaired. Herein, we report the discovery of a series of HER3 degraders by connecting a HER3 binder bosutinib with a hydrophobic tag adamantane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!