Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous-based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein-based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high-resolution micropatterning (<1.2 µm) while retaining good biocompatibility, is presented. The entire fabrication process, including spin-coating, development, and lift-off, employs solely SAMA and water, eliminating the need for toxic reagents and elevated temperature. Notably, the SAMA photoresist allows covalent conjugation of biofunctional molecules, such as enzymes and nucleic acids, while preserving their bioactivity during micropatterning. This innovative approach enables the high-throughput generation of bioactive micropatterns for various applications such as biosynthesis, diagnostics, and biosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202411900 | DOI Listing |
Small
January 2025
School of Engineering, Westlake University, Hangzhou, Zhejiang, 310023, China.
Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous-based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein-based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high-resolution micropatterning (<1.
View Article and Find Full Text PDFPoult Sci
December 2024
Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China. Electronic address:
Egg white proteins are widely recognized as excellent natural emulsifiers, yet the molecular mechanisms underlying their emulsification properties remain incompletely understood, particularly regarding the roles of individual proteins in complex natural systems. Using 4D-label-free quantitative proteomics, we systematically investigated protein dynamics during egg white emulsification by comparing egg white (EW) and the aqueous phases of egg white emulsions (EWE-W). Proteomic analysis identified 96 distinct proteins, with 64 showing significant abundance changes during emulsification.
View Article and Find Full Text PDFChemistry
January 2025
Department of Computer Science, Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands.
Mammalian odorant binding proteins (OBPs) have long been suggested to transport hydrophobic odorant molecules through the aqueous environment of the nasal mucus. While the function of OBPs as odorant transporters is supported by their hydrophobic beta-barrel structure, no rationale has been provided on why and how these proteins facilitate the uptake of odorants from the gas phase. Here, a multi-scale computational approach validated through available high-resolution spectroscopy experiments reveals that the conformational space explored by carvone inside the binding cavity of porcine OBP (pOBP) is much closer to the gas than the aqueous phase, and that pOBP effectively manages to transport odorants by lowering the free energy barrier of odorant uptake.
View Article and Find Full Text PDFAdv Biol (Weinh)
October 2024
LCPME UMR 7564 Université de Lorraine - CNRS, 405 rue de Vandoeuvre, Villers-lès-Nancy, 54600, France.
Viruses are biological entities embodied in protein-based nanoparticles devoid of metabolic activity. Hence, the colloidal, interfacial, and chemical reactivity of virus particles (VPs) profoundly affects the fate of natural and artificial viruses in biotic or abiotic aqueous systems. These rely on the physical chemistry at the outer surface of VPs.
View Article and Find Full Text PDFAdv Biol (Weinh)
October 2024
Department of Bioproducts and Biosystems, Aalto University, Aalto, 00076, Finland.
Developing bioinspired materials to convert sunlight into electricity efficiently is paramount for sustainable energy production. Fluorescent proteins are promising candidates as photoactive materials due to their high fluorescence quantum yield and absorption extinction coefficients in aqueous media. However, developing artificial bioinspired photosynthetic systems requires a detailed understanding of molecular interactions and energy transfer mechanisms in the required operating conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!