Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis. This dsRNA-mediated inflammation leads to acute megakaryopoiesis, which facilitates the generation of megakaryocyte progenitors (MkP) but disrupts megakaryocyte maturation and platelet production. The inflammation and immune response activate the phosphorylation of STAT1 and IRF3, and upregulate downstream interferon-stimulated genes (ISGs). Inflammation inhibits the proliferation rate of hematopoietic progenitors and further skews the cell fate determination toward megakaryocytes rather than erythroid from megakaryocyte-erythroid progenitors (MEPs). Transcriptional-wide gene expression analysis identifies IGF1 as a major factor whose reduction is responsible for the inhibition of megakaryopoiesis and thrombopoiesis. Restoration of IGF1 with METTL3-deficient hematopoietic cells significantly increase megakaryocyte maturation. In summary, we elucidate that the loss of RNA m6A modification-induced acute inflammation activates acute megakaryopoiesis but impairs its final maturation through the inhibition of IGF1 expression during fetal hematopoiesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.204226 | DOI Listing |
Development
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
Mammalian blood cells originate from specialized 'hemogenic' endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the bone marrow. Mechanisms and processes that facilitate EHT and the release of nascent HSCs are incompletely understood, but may involve signaling from neighboring vascular endothelial cells, stromal support cells, circulating pre-formed hematopoietic cells, and/or systemic factors secreted by distal organs.
View Article and Find Full Text PDFCongenit Anom (Kyoto)
January 2025
Department of Histology and Embryology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece.
The current case report presents the postmortem examination findings of a 17-week-old female fetus displaying thanatophoric dysplasia type 1 (TD-1) due to a known fibroblast growth factor receptor 3 (FGFR3) gene mutation. Gross and X-ray examination revealed significant abnormalities, including skeletal malformations with prominent TD-1 femur curvature. Microscopical evaluation indicated inadequate histological growth for the gestational age, with specific organ immaturity noted in multiple hematoxylin and eosin sections from internal organs, bone from epiphyses and diaphyses levels.
View Article and Find Full Text PDFJ Exp Med
February 2025
Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France.
Embryonic hematopoietic cells develop in the fetal liver (FL), surrounded by diverse non-hematopoietic stromal cells. However, the spatial organization and cytokine production patterns of the stroma during FL development remain poorly understood. Here, we characterized and mapped the hematopoietic and stromal cell populations at early (E12.
View Article and Find Full Text PDFLeukemia
January 2025
Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
GATA2 deficiency is an autosomal dominant germline disorder of immune dysfunction and bone marrow failure with a high propensity for leukemic transformation. While sequencing studies have identified several secondary mutations thought to contribute to malignancy, the mechanisms of disease progression have been difficult to identify due to a lack of disease-specific experimental models. Here, we describe a murine model of one of the most common GATA2 mutations associated with leukemic progression in GATA2 deficiency, Gata2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!