Preeclampsia (PE) is the most threatening pathology of human pregnancy. Placenta from PE patients releases harmful factors that contribute to the exacerbation of the disease. Among these factors is the prokineticin1 (PROK1) and its receptor, PROKR2 that we identified as a mediators of PE. Here we tested the effects of PKRA, an antagonist of PROKR2, on the attenuation of PE symptoms. We used the genetic PE mouse model, STOX1 that overexpresses Stox1 gene in a heterozygosis manner in the placenta. This model allowed exploiting two genotypes of the offspring, those that overexpress the Stox1 gene, and the WT that grow in a PE environment (STE). We characterised the effect PKRA (1 μM) on the attenuation of PE symptoms and compared its effects on STOX1 and STE placentas. We also used STOX1 overexpressing trophoblast cells to decipher the PROK1-underlying mechanism. We demonstrated that (i) antagonisation of PROKR2 attenuated PE-mediated hypertension and proteinuria, (ii) STE placentas and foetuses exhibited better outcomes in response to PKRA, (iii) the secretome of STOX1-trophoblasts impacted the integrity of the fetal vasculature that was attenuated by PKRA treatment. This study demonstrates the direct involvement of the PROK1 in PE and identifies PKRA as a promising therapy for PE.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcmm.70346DOI Listing

Publication Analysis

Top Keywords

attenuation symptoms
8
stox1 gene
8
ste placentas
8
pkra
5
stox1
5
antagonisation prokineticin
4
prokineticin receptor-2
4
receptor-2 attenuates
4
attenuates preeclampsia
4
preeclampsia symptoms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!