Type II restriction-modification (R-M) systems play a pivotal role in bacterial defense against invading DNA, influencing the spread of pathogenic traits. These systems often involve coordinated expression of a regulatory protein (C) with restriction (R) enzymes, employing complex feedback loops for regulation. Recent studies highlight the crucial balance between R and M enzymes in controlling horizontal gene transfer (HGT). This manuscript introduces a mathematical model reflecting R-M system dynamics, informed by biophysical evidence, to minimize reliance on arbitrary parameters. Our analysis clarifies the observed variations in M-to-R ratios, emphasizing the regulatory role of the C protein. We analytically derived a stability diagram for C-regulated R-M systems, offering a more straightforward analysis method over traditional numerical approaches. Our findings reveal conditions leading to both monostability and bistability, linking changes in the M-to-R ratio to factors like cell division timing and plasmid replication rates. These variations may link adjusting defense against phage infection, or the acquisition of new genes such as antibiotic resistance determinants, to changing physiological conditions. We also performed stochastic simulations to show that system regulation may significantly increase M-to-R ratio variability, providing an additional mechanism to generate heterogeneity in bacterial population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736437 | PMC |
http://dx.doi.org/10.1093/nar/gkae1322 | DOI Listing |
Sci Rep
January 2025
Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China.
This study aimed to elucidate the potential causal relationship between 4,907 plasma proteins and the risk of gastric cancer using a two-sample Mendelian randomization approach. We utilized genome-wide association study (GWAS) data to perform two-sample Mendelian randomization analyses, treating the 4,907 plasma proteins as exposure factors and gastric cancer as the outcome. Instrumental variables for plasma proteins were selected based on strongly correlated SNPs identified through data processing and screening of the GWAS data provided by the deCode database.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China. Electronic address:
Reclaimed water is widely used in agriculture irrigation to alleviate water scarcity, whereas the dissemination of antibiotic resistance genes (ARGs) in the soil it introduces has attracted widespread attention. Currently, few studies have systematically elucidated the coalescence of the resistome originating from reclaimed water with the soil's native community. Also, the effects and mechanisms of irrigation on the dissemination of ARGs in soils have yet to be demonstrated.
View Article and Find Full Text PDFPoult Sci
January 2025
College of Biology and Agriculture, Shaoguan University, Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, 512005, Guangdong, PR China. Electronic address:
Antibiotic resistance genes (ARG) pollution in poultry farming environments has become increasingly critical, primarily driven by the widespread use of antibiotics in animal husbandry. Prolonged antibiotic use has led to the emergence of ARGs and antibiotic-resistant bacteria, spreading via horizontal and vertical gene transfer. The complexity of ARG pollution in poultry farming arises from the unique farming practices, physiological characteristics of poultry, and manure management methods, with manure, wastewater, and air serving as significant vectors for ARG dissemination.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.
Salmonella enterica serovar Typhimurium is a prevalent food-borne pathogen that is usually associated with gastroenteritis infection. S. Typhimurium is also a major cause of bloodstream infections in sub-Saharan Africa, and is responsible for invasive non-typhoidal Salmonella (iNTS) disease.
View Article and Find Full Text PDFmBio
January 2025
Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
Unlabelled: Bacterial typing at whole-genome scales is now feasible owing to decreasing costs in high-throughput sequencing and the recent advances in computation. The unprecedented resolution of whole-genome typing is achieved by genotyping the variable segments of bacterial genomes that can fluctuate significantly in gene content. However, due to the transient and hypervariable nature of many accessory elements, the value of the added resolution in outbreak investigations remains disputed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!