Toxicological test methods generate raw data and provide instructions on how to use these to determine a final outcome such as a classification of test compounds as hits or non-hits. The data processing pipeline provided in the test method description is often highly complex. Usually, multiple layers of data, ranging from a machine-generated output to the final hit definition, are considered. Transition between each of these layers often requires several data processing steps. As changes in any of these processing steps can impact the final output of new approach methods (NAMs), the processing pipeline is an essential part of a NAM description and should be included in reporting templates such as the ToxTemp. The same raw data, processed in different ways, may result in different final outcomes that may affect the readiness status and regulatory acceptance of the NAM, as an altered output can affect robustness, performance, and relevance. Data management, pro­cessing, and interpretation are therefore important elements of a comprehensive NAM definition. We aim to give an overview of the most important data levels to be considered during the devel­opment and application of a NAM. In addition, we illustrate data processing and evaluation steps between these data levels. As NAMs are increasingly standard components of the spectrum of toxi­cological test methods used for risk assessment, awareness of the significance of data processing steps in NAMs is crucial for building trust, ensuring acceptance, and fostering the reproducibility of NAM outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.14573/altex.2412171DOI Listing

Publication Analysis

Top Keywords

processing steps
16
data processing
16
data
12
raw data
12
overview data
8
test methods
8
processing pipeline
8
data levels
8
processing
7
steps
5

Similar Publications

Background: The gradual extrusion of water-soluble intracellular components (such as proteins) from microalgae after pulsed electric field (PEF) treatment is a well-documented phenomenon. This could be utilized in biorefinery applications with lipid extraction taking place after such an 'incubation' period, i.e.

View Article and Find Full Text PDF

Mechanistic Insights into the Aerobic Oxidation of 2,5-Bis(hydroxymethyl)furfural to 2,5-Furandicarboxylic Acid on Pd Catalysts.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China.

2,5-Furandicarboxylic acid (FDCA) is one of the top selected value-added chemicals, which can be obtained by the aerobic oxidation of 2,5-bis(hydroxymethyl)furfural (BHMF) over a Pd-based catalyst. However, the elucidation of the reaction mechanism was hindered by its rapid kinetics. Herein, employing the density functional theory (DFT) calculations, we delve into the detailed reaction pathways of the BHMF oxidation into FDCA over Pd(111) and PdH(111) identifying the rate-determining steps.

View Article and Find Full Text PDF

Identification of the dead is of utmost importance in mass disasters, war crimes, and forensic examinations. The biological profile, established by a forensic anthropologist is one the necessary steps involved in the identification of the dead. Several parameters can be estimated such as sex, age, stature, biogeographical affinity, and DNA profile of the unknown person.

View Article and Find Full Text PDF

Background: Health authorities worldwide have invested in digital technologies to establish robust information exchange systems for improving the safety and efficiency of medication management. Nevertheless, inaccurate medication lists and information gaps are common, particularly during care transitions, leading to avoidable harm, inefficiencies, and increased costs. Besides fragmented health care processes, the inconsistent incorporation of patient-driven changes contributes to these problems.

View Article and Find Full Text PDF

Development of optical microneedle-lens array for photodynamic therapy.

Biomed Microdevices

January 2025

Institute of Industrial Science, The University of Tokyo, Meguro-Ku, 153-8505, Tokyo, Japan.

Recently, photodynamic therapy (PDT) which involves a photosensitizer (PS), a special drug activated by light, and light irradiation has been widely used in treating various skin diseases such as port-wine stain as well as cancers such as melanoma and non-melanoma skin cancers. PDT comprises two general steps: the introduction of PS into the body or a specific spot to be treated, and the irradiation process using a light source with a specific wavelength to excite the PS. Although PDT is gaining great attention owing to its potential as a targeted approach in the treatment of skin cancers, several limitations still exist for practical use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!