Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development. In this letter, we have designed and synthesized a series of linear oligopeptides adorned with tryptophan residues and identified their potential targets through artificial intelligence-assisted technology and experimental verification. bioactivity assays revealed that the oligopeptides containing Gly-Pro-Trp residues exhibited promising antitumor activity by inducing autophagy and apoptosis. The PharmMapper pharmacophore mapping approach, molecular docking, and molecular dynamics simulations together identified poly(ADP-ribose) polymerase 1 (PARP1), an enzyme associated with chromatin regulation, as the potential target for the designed compounds. Experimental biolayer interferometry (BLI) and enzyme-linked immunosorbent assay (ELISA) have verified that the oligopeptides could bind with PARP1 and influence PARP1 expression levels. A quantitative structure-activity relationship has been established between the chemical structures of the prepared compounds and their IC values. In summary, the research presents a feasible approach for exploring oligopeptide-based antitumor agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.4c01759 | DOI Listing |
J Chem Inf Model
January 2025
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!