Hydrogen sulfide (H2S) plays crucial inflammatory modulating roles, representing a promising candidate for anti-inflammatory therapies. However, current H2S delivery approaches lack sufficient specificity against inflammatory response. Herein, regarding the overexpressed aminopeptidase N (APN) at the inflammation sites, an APN-activated self-immolative carbonyl sulfide (COS)/H2S donor (AlaCOS) was developed for inflammatory response-specific H2S delivery. The compound showed sustained H2S generation upon APN activation in the presence of carbonic anhydrase (CA), and the responsiveness could be well regulated by modulating the amino acid sequence. Due to the inflammatory response-specific sustained H2S delivery, AlaCOS provided potent anti-inflammatory capability, which was further validated by RNA sequencing. In vivo experiments on a full-thickness cutaneous wound murine model also showed the strong promoting effect on wound healing, mainly due to the regulation of the inflammatory response by AlaCOS. By introducing a caged coumarin fluorophore to the molecular architecture, self-reporting fluorescence could be generated accompanied with APN-mediated COS/H2S release, which achieved the visualization of H2S delivery in vitro and in vivo. This work not only offers a useful tool for studying the bioactivity of H2S on inflammation, but also provides new insights for developing novel therapies to cope with inflammation-associated diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202423527 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, Chemistry, 800 Dongchuan Road, Minhang, 200240, Shanghai, CHINA.
Hydrogen sulfide (H2S) plays crucial inflammatory modulating roles, representing a promising candidate for anti-inflammatory therapies. However, current H2S delivery approaches lack sufficient specificity against inflammatory response. Herein, regarding the overexpressed aminopeptidase N (APN) at the inflammation sites, an APN-activated self-immolative carbonyl sulfide (COS)/H2S donor (AlaCOS) was developed for inflammatory response-specific H2S delivery.
View Article and Find Full Text PDFBMC Med Ethics
January 2025
Faculty of Law, University of Montreal, Ch de la Tour, Montreal, QC, H3T 1J7, Canada.
Background: Considering the disruptive potential of AI technology, its current and future impact in healthcare, as well as healthcare professionals' lack of training in how to use it, the paper summarizes how to approach the challenges of AI from an ethical and legal perspective. It concludes with suggestions for improvements to help healthcare professionals better navigate the AI wave.
Methods: We analyzed the literature that specifically discusses ethics and law related to the development and implementation of AI in healthcare as well as relevant normative documents that pertain to both ethical and legal issues.
Acta Pharm Sin B
December 2024
Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China.
Hydrogen sulfide (HS) is a gas signaling molecule with versatile bioactivities; however, its exploitation for disease treatment appears challenging. This study describes the design and characterization of a novel type of HS donor-drug conjugate (DDC) based on the thio-ProTide scaffold, an evolution of the ProTide strategy successfully used in drug discovery. The new HS DDCs achieved hepatic co-delivery of HS and an anti-fibrotic drug candidate named hydronidone, which synergistically attenuated liver injury and resulted in more sufficient intracellular drug exposure.
View Article and Find Full Text PDFActa Biomater
January 2025
School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, P. R. China. Electronic address:
Angew Chem Int Ed Engl
January 2025
Fudan University, Macromolecular Science, No.220, Handan Road, Yangpu District, 200433, Shanghai, CHINA.
Hydrogen sulfide (H2S), as a gasotransmitter, not only plays a vital role in mediating many cellular activities but also manifests exciting applications in clinical therapy. However, one main obstacle in using H2S as a gaseous therapeutic agent is to realize on-demand storage and delivery of gas, and thus, it is of great importance to develop H2S-donating vehicle platforms. Although a variety of polymer-based gas-releasing carriers have been designed, almost all the systems are limited to spherical structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!