Background And Purpose: Radiation-induced lymphopenia (RIL) may be associated with a worse prognosis in pancreatic cancer. This study aimed to develop a normal tissue complication probability (NTCP) model to predict severe RIL in patients with pancreatic cancer undergoing concurrent chemoradiotherapy (CCRT).

Materials And Methods: We reviewed pancreatic cancer patients treated at our facility for model training and internal validation. Subsequently, we reviewed data from three other facilities to validate model fit externally. An absolute lymphocyte count (ALC) of <0.5 × 10/μL during CCRT was defined as severe RIL. An NTCP model was trained using a least absolute shrinkage and selection operator (LASSO)-based logistic model. The model's predictive performance was evaluated using the receiver operating characteristic area under the curve (AUC), scaled Brier score, and calibration plots.

Results: Among the 114 patients in the training set, 78 had severe RIL. LASSO showed that low baseline ALC, large planning target volume, and high percentage of bilateral kidneys receiving ≥ 5Gy were selected as parameters of the NTCP model for severe RIL. The AUC and scaled Brier score were 0.91 and 0.49, respectively. Internal validation yielded an average AUC of 0.92. In the external validation with 68 patients, the AUC and scaled Brier score was 0.83 and 0.30, respectively. Calibration plots showed good conformity.

Conclusions: The NTCP model for severe RIL during CCRT for pancreatic cancer, developed and validated in this study, demonstrated good predictive performance. This model can be used to evaluate and compare the risk of RIL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733268PMC
http://dx.doi.org/10.1016/j.phro.2024.100690DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
20
severe ril
20
ntcp model
16
model severe
12
auc scaled
12
scaled brier
12
brier score
12
model
9
normal tissue
8
tissue complication
8

Similar Publications

Background And Purpose: Radiation-induced lymphopenia (RIL) may be associated with a worse prognosis in pancreatic cancer. This study aimed to develop a normal tissue complication probability (NTCP) model to predict severe RIL in patients with pancreatic cancer undergoing concurrent chemoradiotherapy (CCRT).

Materials And Methods: We reviewed pancreatic cancer patients treated at our facility for model training and internal validation.

View Article and Find Full Text PDF

Cell type-specific upregulation of NKG2D ligand MICA in response to APTO253.

Ann Transl Med

December 2024

Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.

One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11% in the United States. As for other types of tumors, such as colorectal cancer, aberrant lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.

Aim: To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid (FA) import into cell.

View Article and Find Full Text PDF

Exosomes as promising frontier approaches in future cancer therapy.

World J Gastrointest Oncol

January 2025

Department of Automatic Control Engineering, Feng Chia University, Taichung 407, Taiwan.

In this editorial, we will discuss the article by Tang published in the recent issue of the . They explored an innovative approach to enhancing gemcitabine (GEM) delivery and efficacy using human bone marrow mesenchymal stem cells (HU-BMSCs)-derived exosomes. The manufacture of GEM-loaded HU-BMSCs-derived exosomes (Exo-GEM) has been optimized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!