Identification and Characterization of a Protease Producing Strain From Tannery Waste for Efficient Dehairing of Goat Skin.

Biomed Res Int

Center for Personalized Nanomedicine, Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia.

Published: January 2025

Environmental pollution has been a significant concern for the last few years. The leather industry significantly contributes to the economy but is one of Bangladesh's most prominent polluting industries. It is also responsible for several severe diseases such as cancer, lung diseases, and heart diseases of leather workers because they use bleaching agents and chemicals, and these have numerous adverse effects on human health. The study was aimed at isolating, identifying, and molecularly characterizing bacteria that produce protease enzymes that are highly capable of dehairing goat hide. Several attempts were made to isolate and identify protease-producing bacterial strains from different soil samples of tannery wastes. Initially, a total of four isolates were selected from tannery soil. After the different phenotypic and morphological characterization, one isolate (BS2) showed Gram-positive, rod-shaped, and spore-forming characteristics and could produce novel hair-degrading protease enzymes. The growth profile and protease activity of the bacteria at 37°C were observed; a basal level of extracellular protease increased with time. The enzyme's proteolytic activity was measured, and the unit of enzyme activity of the enzyme sample was 18.1. The ExPASy server (ProtParam) tool was used to estimate the physicochemical characteristics of the proteins and found molecular weight (MW) (7375.94 Da), aliphatic index (71.56), instability index (II, 80.63), Grand Average of Hydropathy (GRAVY) (-0.231), and isoelectric point (11.41). The protein-protein interactions (PPI) networks were generated using the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape software. The PSIPRED v.4.0 and SAVES v.6.0 programs were used to determine the secondary and three-dimensional assembly of the selected protein. They found alpha helix (16, 25.00%), extended strand (6, 9.38%), beta-turn (5, 7.81%), and random coil (37, 57.81%). DNA isolation and purification were carried out, and the purity ratio was ~2.17 at 260 and 280 nm. Polymerase chain reaction (PCR) for amplifying the 16S rRNA gene was conducted, and the isolate was authentically recognized as (BS2) based on morphological, biochemical, and molecular analyses. The quantitative assessment has shown that 40 mL of culture centrifugation could dehair 2 × 1 cm of goat leather sample in 9 h. This potential bacterial strain can be used in the leather industry as an ecofriendly alternative to chemical dehairing, which can reduce environmental pollution and the risk of severe diseases among leather industry workers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729492PMC
http://dx.doi.org/10.1155/bmri/7639181DOI Listing

Publication Analysis

Top Keywords

leather industry
12
dehairing goat
8
environmental pollution
8
severe diseases
8
diseases leather
8
protease enzymes
8
protease
5
leather
5
identification characterization
4
characterization protease
4

Similar Publications

The substantial waste generated during the processing of hides and skins as well as at other stages of manufacturing is a recurring issue in the leather industry that this article attempts to address. To investigate the mechanical and thermal characteristics of the resultant composites, this study suggests using leather waste from the bovine leather industry, analyzes the tanning process, and assesses the viability of mixing this waste with natural rubber (TSR-20). Without the inclusion of leather waste, the resulting composites had exceptional tensile strength, surpassing 100% of rubber's strength.

View Article and Find Full Text PDF

Biodegradation of Phenol at High Initial Concentration by 3D Strain: Biochemical and Genetic Aspects.

Microorganisms

January 2025

Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia.

Phenolic compounds are an extensive group of natural and anthropogenic organic substances of the aromatic series containing one or more hydroxyl groups. The main sources of phenols entering the environment are waste from metallurgy and coke plants, enterprises of the leather, furniture, and pulp and paper industries, as well as wastewater from the production of phenol-formaldehyde resins, adhesives, plastics, and pesticides. Among this group of compounds, phenol is the most common environmental pollutant.

View Article and Find Full Text PDF

Liquid crystal sensor for Cr(III)-citrate detection via interfacial coagulation.

Anal Chim Acta

February 2025

Department of Chemistry, Tamkang University, New Taipei City, 25137, Taiwan. Electronic address:

Background: Trivalent chromium (Cr(III)) and its highly soluble carboxyl complexes, often discharged into the environment by industries such as electroplating, leather tanning, and textile manufacturing, present severe risks to human health and ecosystems due to their high toxicity. These compounds are notoriously difficult to detect and remove during wastewater treatment, as they can persist in aqueous environments. Consequently, there is a pressing need for the development of simple, cost-effective, and reliable methods for their detection, which can improve monitoring, facilitate timely interventions, and enhance environmental protection efforts.

View Article and Find Full Text PDF

Corrigendum to "Facile degradation of chitosan-sodium alginate-chromium (III) gel in relation to leather re-tanning and filling" [International Journal of Biological Macromolecules, 240 (2023) 124437].

Int J Biol Macromol

January 2025

State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China. Electronic address:

View Article and Find Full Text PDF

and Aims We conducted this research motivated by the incomplete knowledge of the changes made by resonance and harmonic filtering processes made by articulatory gestures in the supralar-yngeal level of the vocal tract. Aim of research The goal of the study is to evaluate the adaptive changes taking place at the oropharyngeal isthmus during sustained phonation. Methods We focused on exploring the dynamics of the oropharyngeal pavilion in voice professionals using Cone-Beam Computed Tomogra-phy (CBCT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!