Benzenedialdehyde-crosslinked gelatin nanoparticles for Pickering emulsion stabilization.

Curr Res Food Sci

Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.

Published: December 2024

In this work, three types of benzenedialdehydes (1,2-, 1,3-, and 1,4-BDAs) were used to prepare BDA-crosslinked gelatin nanoparticles and the 1,2-BDA-crosslinked gelatin nanoparticle was explored to stabilize fish oil-loaded Pickering emulsions. The nanoparticle preparation was dependent on both pH and crosslinker types. 1,2-BDA and preparation pH of 12.0 induced the most nanoparticle amounts among the three BDAs and a pH range of 3.0-12.0. The crosslinked gelatin nanoparticles (10-nm scale) could aggregate to form larger nanoparticles (hundred-nanometer scale) in the water. The BDA crosslinking induced lower emulsifying properties (EAI: 10.2 ± 0.3 m/g; ESI: 69.7 ± 3.6 min) for gelatin nanoparticles than gelatin (EAI: 30.9 ± 0.6 m/g; ESI: 267.8 ± 2.0 min). With the increase of the gelatin nanoparticle concentrations (5-40 g/L), the emulsion viscosity increased (163 ± 9-422 ± 3 mPa s at the rotary speed of 60 rpm), the interfacial tension decreased (10.3 ± 0.2-7.2 ± 0.2 mN/m), and the creaming indexes decreased (42.1% ± 0.7%-13.3% ± 0.8% at day 21). The higher sodium chloride concentration (0.0-0.8 mol/L) induced the lower emulsion stability, even obvious phase separation (0.8 mol/L of NaCl). Therefore, the sodium chloride addition should be carefully considered for the development of emulsion-based foods. This work provided useful information for the development and application of protein nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733051PMC
http://dx.doi.org/10.1016/j.crfs.2024.100961DOI Listing

Publication Analysis

Top Keywords

gelatin nanoparticles
16
gelatin nanoparticle
8
induced lower
8
sodium chloride
8
nanoparticles
6
gelatin
6
benzenedialdehyde-crosslinked gelatin
4
nanoparticles pickering
4
pickering emulsion
4
emulsion stabilization
4

Similar Publications

Benzenedialdehyde-crosslinked gelatin nanoparticles for Pickering emulsion stabilization.

Curr Res Food Sci

December 2024

Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.

In this work, three types of benzenedialdehydes (1,2-, 1,3-, and 1,4-BDAs) were used to prepare BDA-crosslinked gelatin nanoparticles and the 1,2-BDA-crosslinked gelatin nanoparticle was explored to stabilize fish oil-loaded Pickering emulsions. The nanoparticle preparation was dependent on both pH and crosslinker types. 1,2-BDA and preparation pH of 12.

View Article and Find Full Text PDF

In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Nanotechnology has experienced significant advancements, attracting considerable attention in various biomedical applications. This innovative study synthesizes and characterizes Ge/PLA/AuNCs (gelatin/PLA/gold nanocomposites) using Syzygium cumini extract to evaluate their various biomedical applications. The UV-Visible spectroscopy results in an absorption peak at 534 nm were primarily confirmed by Ge/PLA/AuNCs synthesis.

View Article and Find Full Text PDF

The bacterial infection and oxidative wound microenvironment delay skin repair and necessitate intelligent wound dressings to enable scarless wound healing. The immunoglobulin of yolk (IgY) exhibits immunotherapeutic potential for the potential treatment of antimicrobial-resistant pathogens, while cerium oxide nanoparticles (CeO NPs) could scavenge superoxide dismutase (SOD) and inflammation. The overarching objective of this study was to incorporate IgY and CeO NPs into poly(L-lactide-co-glycolide)/gelatin (PLGA/Gel)-based dressings (P/G@IYCe) for infected skin repair.

View Article and Find Full Text PDF

The management of diabetic wounds faces significant challenges due to the excessive activation of reactive oxygen species (ROS), dysregulation of the inflammatory response, and impaired angiogenesis. A substantial body of evidence suggests that the aforementioned diverse factors contributing to the delayed healing of diabetic wounds may be associated with impaired autophagy. Impaired autophagy leads to endothelial and fibroblast dysfunction and impedes macrophage phenotypic transformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!