Explore Alteration of Lung and Gut Microbiota in a Murine Model of OVA-Induced Asthma Treated by CpG Oligodeoxynucleotides.

J Inflamm Res

Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Anhui Geriatric Institute, Hefei, Anhui, People's Republic of China.

Published: January 2025

Aim: We sought to investigate the impact of CpG oligodeoxynucleotides (CpG-ODN) administration on the lung and gut microbiota in asthmatic mice, specifically focusing on changes in composition, diversity, and abundance, and to elucidate the microbial mechanisms underlying the therapeutic effects of CpG-ODN and identify potential beneficial bacteria indicative of its efficacy.

Methods: HE staining were used to analyze inflammation in lung, colon and small intestine tissues. High-throughput sequencing technology targeting 16S rRNA was employed to analyze the composition, diversity, and correlation of microbiome in the lung, colon and small intestine of control, model and CpG-ODN administration groups.

Results: (1) Histopathologically, both lung and intestinal tissue in asthmatic mice exhibited significant structural damage and inflammatory response, whereas the structure of both lung and intestinal tissue approached normal levels, accompanied by a notable improvement in the inflammatory response after CpG-ODN treatment. (2) In the specific microbiota composition analysis, bacterial dysbiosis observed in the asthmatic mice, accompanied by enrichment of Proteobacteria found to cause lung and intestinal epithelial damage and inflammatory reaction. After CpG-ODN administration, bacterial dysbiosis was improved, and a notable enrichment of beneficial bacteria, indicating a novel microecology. Meanwhile Oscillospira and Clostridium were identified as two biomarkers of the CpG-ODN treatment. (3) Heatmap analysis revealed significant correlations among lung, small intestine, and colon microbiota.

Conclusion: CpG-ODN treatment can ameliorate OVA-induced asthma in mice. One side, preserving the structural integrity of the lung and intestine, safeguarding the mucosal physical barrier, the other side, improving the dysbiosis of lung and gut microbiota in asthmatic mice. Beneficial bacteria and metabolites take up microecological advantages, regulate immune cells and participate in the mucosal immune response to protect the immune barrier. Meanwhile, Oscillospira and Clostridium as biomarkers for CpG-ODN treatment, has reference significance for exploring precise Fecal microbiota transplantation treatment for asthma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734504PMC
http://dx.doi.org/10.2147/JIR.S487916DOI Listing

Publication Analysis

Top Keywords

asthmatic mice
16
cpg-odn treatment
16
lung gut
12
gut microbiota
12
cpg-odn administration
12
beneficial bacteria
12
small intestine
12
lung intestinal
12
lung
10
ova-induced asthma
8

Similar Publications

Explore Alteration of Lung and Gut Microbiota in a Murine Model of OVA-Induced Asthma Treated by CpG Oligodeoxynucleotides.

J Inflamm Res

January 2025

Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Anhui Geriatric Institute, Hefei, Anhui, People's Republic of China.

Aim: We sought to investigate the impact of CpG oligodeoxynucleotides (CpG-ODN) administration on the lung and gut microbiota in asthmatic mice, specifically focusing on changes in composition, diversity, and abundance, and to elucidate the microbial mechanisms underlying the therapeutic effects of CpG-ODN and identify potential beneficial bacteria indicative of its efficacy.

Methods: HE staining were used to analyze inflammation in lung, colon and small intestine tissues. High-throughput sequencing technology targeting 16S rRNA was employed to analyze the composition, diversity, and correlation of microbiome in the lung, colon and small intestine of control, model and CpG-ODN administration groups.

View Article and Find Full Text PDF

Background And Objective: Asthma-COPD overlap (ACO) is characterized by patients exhibiting features of both asthma and COPD. Currently, there is no specific treatment for ACO. This study aimed to investigate the therapeutic potential of targeting CD131, a shared receptor subunit for IL-3, IL-5 and GM-CSF, in ACO development and in preventing acute viral exacerbations.

View Article and Find Full Text PDF

The role of mTOR activation in steroid-resistant asthma: insights from particulate matter-induced mouse model and patient studies.

Inflamm Res

January 2025

Institute of Allergy and Clinical Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.

Particulate matter (PM) exposure has been proposed as one of the causes of steroid resistance. However, studies investigating this using patient samples or animals are still lacking. Therefore, in this study, we aimed to investigate the changes in cytokines and mTOR (mammalian target of rapamycin) activation in patients with steroid resistant asthma and the role of mTOR in a mouse model of steroid resistant asthma induced by PM.

View Article and Find Full Text PDF

Characterization of a chitinase from Trichinella spiralis and its immunomodulatory effects on allergic airway inflammation in mice.

Parasit Vectors

January 2025

School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China.

Background: A fundamental tenet of the hygiene theory is the inverse association between helminth infections and the emergence of immune-mediated diseases. Research has been done to clarify the processes by which helminth-derived molecules can inhibit immunological disorders. This study aimed to evaluate the ability of Trichinella spiralis chitinase (Ts-chit) to ameliorate the symptoms of allergic airway inflammation.

View Article and Find Full Text PDF

The root of asthma can be linked to early life, with prenatal environments influencing risk. We investigate the effects of maternal asthma on the offspring's lungs during fetal and adult life. Adult offspring of asthmatic mothers show an increase in lung group 2 innate lymphoid cell (ILC2) number and function with allergen-induced lung inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!