Intestinal helminths have evolved an abundance of immunomodulatory mechanisms to ensure long-lived infections in mammalian hosts. To manipulate mammalian immune responses helminths can directly produce immunomodulatory molecules, but helminth infection can also elicit functional changes in the intestinal microbiome which can impact immune functioning. Here we examined how bile acids (BA)s, a group of host-produced, microbiota-modified immunomodulatory metabolites, were altered in abundance and composition during a murine small intestinal helminth infection. We found that murine helminth infection resulted in consistently reduced concentrations of specific taurine-conjugated primary BAs (T-α-MCA and T-CDCA) in the small intestinal luminal contents of mice. BA transporters facilitate the uptake of BAs from the small intestinal lumen, allowing BAs to engage with nuclear BA receptors, and helminth infected mice showed reduced expression of genes encoding basal BA transporters in the small intestine. Finally, we report that there is reduced signaling through the nuclear BA receptor FXR in both the proximal small intestine and ileum of mice during small intestinal helminth infection. Together, our data reveal disruptions to BA homeostasis and signaling in the small intestine during helminth infection. As BAs are known to impact many aspects of mucosal physiology and immunity, examining the functional consequences of BA disruptions during helminth infection will be an important avenue for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731828PMC
http://dx.doi.org/10.3389/fpara.2023.1214136DOI Listing

Publication Analysis

Top Keywords

helminth infection
28
small intestinal
20
small intestine
16
intestinal helminth
12
helminth
8
bile acid
8
small
8
murine small
8
intestinal
7
infection
7

Similar Publications

Hidden in plain sight: How helminths manage to thrive in host blood.

Front Parasitol

March 2023

Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland.

Parasitic helminths have evolved a plethora of elegant stratagems to regulate and evade the host immune system, contributing to their considerable persistence and longevity in their vertebrate hosts. Various mechanisms to achieve this state have been described, ranging from interfering with or actively modulating host immune responses to hiding from immune recognition. Because they damage surrounding vessels and disturb blood flow, blood-borne and blood-feeding parasites in particular must deal with much more than immune effector cells.

View Article and Find Full Text PDF

Intestinal helminths have evolved an abundance of immunomodulatory mechanisms to ensure long-lived infections in mammalian hosts. To manipulate mammalian immune responses helminths can directly produce immunomodulatory molecules, but helminth infection can also elicit functional changes in the intestinal microbiome which can impact immune functioning. Here we examined how bile acids (BA)s, a group of host-produced, microbiota-modified immunomodulatory metabolites, were altered in abundance and composition during a murine small intestinal helminth infection.

View Article and Find Full Text PDF

Fascioliosis is a food-borne zoonotic helminth infection caused by flatworms belonging to the family Fasciolidae, primarily affecting ruminants. The chronic form of fascioliosis is the most prevalent and is characterized by anemia, weight loss, cirrhosis, and liver dysfunction, along with atrophy, jaundice, and bottle jaw. In humans, infection results in fever, nausea, skin rashes, and severe abdominal pain.

View Article and Find Full Text PDF

Intestinal parasitic infections (IPIs), caused by helminths and/or protozoa, continue to be a significant public health concern in Indonesia. Water access, sanitation, and hygiene practices (WASH) are influential factors for IPIs, especially among children. The aim of this study was to investigate the association between WASH and IPIs among school-aged children.

View Article and Find Full Text PDF

Schistosomiasis poses a significant global health threat, particularly in tropical and subtropical regions like Sudan. Although numerous epidemiological studies have examined schistosomiasis in Sudan, the genetic diversity of Schistosoma haematobium populations, specifically through analysis of the mtcox1 gene, remains unexplored. This study aimed to investigate the risk factors associated with urogenital schistosomiasis among school pupils in El-Fasher, Western Sudan, as well as the mtcox1 genetic diversity of human S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!