Background: Improved diagnostic tools are needed for detecting active filarial infections in humans. Tests are available that detect adult circulating filarial antigen, but there are no sensitive and specific biomarker tests for brugian filariasis or loiasis. Here we explored whether extracellular vesicles released by filarial parasites contain diagnostic biomarker candidates.
Methods: Vesicles were isolated using VN96-affinity purification from supernatants of short-term cultured microfilariae (Mf) and analyzed by mass spectrometry (Bruker timsTOF). Parasite-specific proteins were identified by bioinformatic analysis and a protein was called present if supported by ≥ 2 spectra. After validation with cultures parasites, this approach was then used to analyze vesicles isolated from plasma of animals infected with and from humans with heavy infections.
Results: Vesicles from Mf cultures contained more than 300 proteins with high consistency across biological replicates. These included the known Mf excretory antigen BmR1 (AF225296). Over 150 proteins were detected in vesicles isolated from plasma samples from two infected animals. Vesicles isolated from plasma from 10 persons with high Mf densities contained consistently 21 proteins, 9 of them were supported by at least 5 unique peptides and 7 with spectral counts above 10. The protein EN70_10600 (an orthologue of the antigen BmR1, GenBank AF225296) was detected in all 10 samples with a total count of 91 spectra and a paralogue (EN70_10598) was detected in 6 samples with a total of 44 spectra.
Discussion: Extracellular vesicles released by filarial parasites and contain parasite proteins which can be reliably detected by mass spectrometry. This research provides the foundation to develop antigen detection assays to improve diagnosis of active filarial infections in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732158 | PMC |
http://dx.doi.org/10.3389/fpara.2023.1281092 | DOI Listing |
Front Parasitol
April 2024
INRS- Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
Extracellular vesicles released by the protozoan parasite display immunomodulatory properties towards mammalian immune cells. In this study, we have evaluated the potential of extracellular vesicles derived from the non-pathogenic protozoan towards the development of a vaccine adjuvant. As a proof of concept, we expressed in a codon-optimized SARS-CoV-2 Spike protein fused to the secreted acid phosphatase signal peptide in the N-terminal and to a 6×-His stretch in the C-terminal.
View Article and Find Full Text PDFJ Extracell Vesicles
January 2025
National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA.
The discovery that extracellular RNAs (exRNA) can act as endocrine signalling molecules established a novel paradigm in intercellular communication. ExRNAs can be transported, both locally and systemically in virtually all body fluids. In association with an array of carrier vehicles of varying complexity, exRNA can alter target cell phenotype.
View Article and Find Full Text PDFChromosome Res
January 2025
Saint-Petersburg State University, Saint-Petersburg, Russia.
Danio rerio, commonly known as zebrafish, is an established model organism for the developmental and cell biology studies. Although significant progress has been made in the analysis of the D. rerio genome, cytogenetic studies face challenges due to the unclear identification of chromosomes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
Extracellular vesicles (EVs) are nanosized lipid bilayer particles released by various cellular organisms that carry an array of bioactive molecules. EVs have diagnostic potential, as they play a role in intercellular interspecies communication, and could be applied in drug delivery. In contrast to mammalian cell-derived EVs, the study of EVs from bacteria, particularly Gram-positive bacteria, received less research attention.
View Article and Find Full Text PDFSci Adv
January 2025
Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA.
Precise and rapid disease detection is critical for controlling infectious diseases like COVID-19. Current technologies struggle to simultaneously identify viral RNAs and host immune antibodies due to limited integration of sample preparation and detection. Here, we present acoustofluidic integrated molecular diagnostics (AIMDx) on a chip, a platform enabling high-speed, sensitive detection of viral immunoglobulins [immunoglobulin A (IgA), IgG, and IgM] and nucleic acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!