Recommended Opioid Receptor Tool Compounds: Comparative for Receptor Selectivity Profiles and for Pharmacological Antinociceptive Profiles.

ACS Pharmacol Transl Sci

Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States.

Published: January 2025

Opioid agonist ligands bind opioid receptors and stimulate downstream signaling cascades for various biological processes including pain and reward. Historically, before cloning the receptors, muscle contraction assays using isolated organ tissues were used followed by radiolabel ligand binding assays on native tissues. Upon cloning of the opioid G protein-coupled receptors (GPCRs), cell assays using transfected opioid receptor DNA plasmids became the standard practice including S-GTPγS functional and cAMP based assays. A number of research laboratories have studied key "tool" reference opioid receptor ligands for decades and used them as control reference compounds. Some, but not all, of these commonly used tool compounds have been characterized and compared side by side in parallel assays for selectivity profiles at the different human opioid receptors isoforms. Herein, we performed the standard FLIPR calcium mobilization assay using HEK293 cells engineered to stably express the Gα in parallel, at human MOR, KOR, DOR, and NOP opioid receptors. The following tool compounds: morphine, fentanyl, oxycodone, DAMGO, DPDPE, U69593, deltorphin II, and nociceptin, were examined herein. These included the substance use disorder (SUD) compounds morphine, fentanyl, and oxycodone. Additionally, the antagonist tool compounds naloxone, NTI, norBNI, and β-FNA were assayed in parallel at the human MOR, KOR, DOR, and NOP opioid receptors. Furthermore, the agonist tool compounds were tested in the same tail-flick antinociception assays via intrathecal injection for ED potencies. These data provide both comparative pharmacology as a reference for cellular activities and antinociception profiles for these tool compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729433PMC
http://dx.doi.org/10.1021/acsptsci.4c00604DOI Listing

Publication Analysis

Top Keywords

tool compounds
24
opioid receptors
16
opioid receptor
12
compounds
8
selectivity profiles
8
opioid
8
parallel human
8
human mor
8
mor kor
8
kor dor
8

Similar Publications

hERGAT: predicting hERG blockers using graph attention mechanism through atom- and molecule-level interaction analyses.

J Cheminform

January 2025

Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, Republic of Korea.

The human ether-a-go-go-related gene (hERG) channel plays a critical role in the electrical activity of the heart, and its blockers can cause serious cardiotoxic effects. Thus, screening for hERG channel blockers is a crucial step in the drug development process. Many in silico models have been developed to predict hERG blockers, which can efficiently save time and resources.

View Article and Find Full Text PDF

The Ca/calmodulin-dependent protein kinase II α (CaMKIIα) plays a crucial role in regulating neuronal signaling and higher brain functions, being involved in various brain diseases. Utilization of small molecules targeting the CaMKIIα hub domain has proved to be a promising strategy for specific CaMKIIα modulation and future therapy. Through an structure-based virtual screening campaign, we herein identified 2-arylthiazole-4-carboxylic acids as a new class of high-affinity CaMKIIα hub ligands.

View Article and Find Full Text PDF

Estimating pesticide concentrations in paddy rice systems is challenging due to unique cultivation methods and water management practices. Various models, ranging from simple exposure calculators to complex scenario-dependent tools, have been developed globally to address this issue (PADDY, MED-Rice, RICEWQ, PFAM). In Brazil, pesticides are used in paddy rice production, and there is a potential risk of these compounds reaching waterbodies.

View Article and Find Full Text PDF

The 2024 Zurich perfluorinated compounds (PFCs) summit reiterated the urgent need for non-selective analytical approaches for PFC detection. 19F NMR holds great potential, however, sensitivity limitations lead to long analysis times and/or the possibility of not detecting low concentration species. Steady State Free Precession (SSFP) NMR collects the signal in a steady state regime, allowing 100's of acquisitions in the timespan of a single traditional NMR scan.

View Article and Find Full Text PDF

Up to 90% of high-grade serous ovarian cancer (HGSC) patients will develop resistance to platinum-based chemotherapy, posing substantial therapeutic challenges due to a lack of universally druggable targets. Leveraging BenevolentAI's AI-driven approach to target discovery, we screened potential AI-predicted therapeutic targets mapped to unapproved tool compounds in patient-derived 3D models. This identified TNIK, which is modulated by NCB-0846, as a novel target for platinum-resistant HGSC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!