Background And Objective: As the global population ages, degenerative spinal disorders are on the rise, leading to an increased focus on optimizing spinal fusion therapies. Despite the high success rate of iliac crest bone autografts, their usage is hampered by donor site morbidity and limited supply. The objective of this review is to assess the viability of ceramic-based synthetic materials as alternatives in spinal fusion surgeries.

Methods: A review of national databases was performed using key terms "allograft", "nanosynthetic", "spine", and "surgery" for literature from 1900 to 2024. Studies that aimed to describe the utility of ceramic allografts, associated outcomes, limitations, and future directions were included. Studies that were not in English were excluded.

Key Content And Findings: Successful spinal fusion relies on osteoconductivity, osteoinductivity, osteogenesis, and osteointegration. Ceramic-based materials, primarily calcium sulfates, phosphates, hydroxyapatites (HAs), and silicon nitrides, are recognized for their osteoconductive properties. Recent studies suggest the efficacy of ceramics as graft extenders and highlight both their compatibility and cost-effectiveness. Innovations like nanosynthetic bone grafts have shown potential in preclinical trials, offering enhanced bone formation and resorption properties. The narrative review details comparative outcomes of various synthetic grafts against autografts and allografts, indicating similar fusion rates with potentially lower complication rates.

Conclusions: Ceramic-based synthetic materials represent a significant advancement in spinal fusion procedures, with properties that can potentially match those of autografts. Nanosynthetic grafts, in particular, exhibit promising results in animal studies and initial clinical trials. The continuous development and evaluation of these materials could optimize fusion rates and reduce the morbidity associated with autograft harvesting. However, further research is required to assess long-term outcomes and determine the best practices for their use in spinal surgeries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732321PMC
http://dx.doi.org/10.21037/jss-24-55DOI Listing

Publication Analysis

Top Keywords

spinal fusion
16
narrative review
8
nanosynthetic bone
8
ceramic-based synthetic
8
synthetic materials
8
fusion rates
8
spinal
6
fusion
6
ceramic synthetic
4
synthetic allografts
4

Similar Publications

Purpose: The aim was to assess the clinical outcomes after posterior spinal fusion (PSF) in patients with Scheuermann's disease (SD).

Methods: SD undergoing PSF were retrospectively analyzed. Clinical outcome was determined using SRS-22- and Eq.

View Article and Find Full Text PDF

Lumbar foraminal stenosis can be surgically treated by foraminal decompression or facet joint resection and fusion (transforaminal lumbar interbody fusion, TLIF). While conventional foraminal decompression poses a risk of segmental instability, the endoscopic approach (extended endoscopic lumbar foraminotomy, EELF) resects only the ventral part of the facet joint with a horizontal surgical trajectory. A prospective observational study was performed to analyze the cost-effectiveness of EELF versus TLIF.

View Article and Find Full Text PDF

Congenital scoliosis presenting in teenage years outcomes without hemivertebra excision.

Spine Deform

January 2025

Department of Orthopaedics, Spinal Deformity and Pediatric Orthopaedics, Billie and George Ross Center for Advanced Pediatric Orthopaedics and Minimally Invasive Spinal Surgery, Cohen Children's Medical Center, Northwell Hofstra School of Medicine, 7 Vermont Drive, Lake Success, NY, 11042, USA.

Purpose: In congenital scoliosis, the surgical strategy approach of hemivertebra excision, with or without instrumentation and fusion, is a common approach to correction of scoliosis. However, hemivertebra excisions are technically challenging, with potential complications including spinal cord injury, nerve root injury and cerebrospinal fluid leak. The purpose of this study was to determine whether correction of congenital scoliosis can be achieved using a posterior instrumentation/fusion-only approach without the need for hemivertebra excision.

View Article and Find Full Text PDF

Anterior cervical interbody fusion (ACDF) has become a classic surgical procedure for the treatment of cervical degenerative diseases, and various interbody cages are widely used in this procedure. We used 3D printing technology to produce a new type of plate-locking cage, anticipating to achieve high fusion rate with the high biomechanical stability. This study is to compare the biomechanical characteristics between a newly designed interbody cage and a conventional Zero-profile cage during ACDF using finite element analysis.

View Article and Find Full Text PDF

Background: One-hole split endoscopy (OSE) is a novel endoscopic technique that offers some advantages in spinal surgery. However, without a clear understanding of the safe zone for OSE, surgeons risk injuring nerve roots during the procedure. This study aimed to measure the safe distances among critical bone markers, the intervertebral space and nerve roots between 1-degree degenerative lumbar spondylolisthesis (DLS) and non-DLS at the L segment in patients via three-dimensional reconstruction and to compare the differences in relevant safety distances between the two groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!