Tsunamis are massive waves generated by sudden water displacement on the ocean surface, causing devastation as they sweep across the coastlines, posing a global threat. The aftermath of the 2004 Indian Ocean tsunami led to the establishment of the Indian Tsunami Early Warning System (ITEWS). Predicting real-time tsunami heights and the resulting coastal inundation is crucial in ITEWS to safeguard the coastal communities. Global tsunamis other than those in the Indian Ocean might weaken at Indian coasts due to distance yet still cause significant damage due to local coastal morphological amplification. The current study focuses on tsunami simulations over global oceans. A finite element (FE)-based ADvanced CIRCulation (ADCIRC) model is configured to the global domain to model global tsunamis accurately and efficiently. The model mesh has a spatial resolution of 2 km in the shallow waters and relaxed to 20 km in the deeper waters. Model simulations are performed for significant historical events, assessing their effect on near and far field regions. Computed results are compared with the observations, and it is found that the model's predictions align well with the observations. The simulation results demonstrate that ADCIRC can be applied to real-time tsunami predictions due to its computational efficiency and accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732432 | PMC |
http://dx.doi.org/10.1098/rsos.241128 | DOI Listing |
Nat Commun
January 2025
Centre for Marine Magnetism (CM2), Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
Late Miocene climate evolution provides an opportunity to assess Earth's climate sensitivity to carbon cycle perturbation under warmer-than-modern conditions. Despite its relevance for understanding the climate system, the driving mechanisms underlying profound climate and carbon cycle changes - including the enigmatic Late Miocene cooling from 7 to 5.4 million years ago - remain unclear.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea; Research Center for Strategic Solutions for Environmental Blindspots in the Interest of Society, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea. Electronic address:
Observational studies of marine aerosols are essential for understanding the global aerosol budget and its environmental impacts. This study presents simultaneous in-situ measurements of major ionic components (Cl, NO, SO, NH, K, Ca, Na, and Mg) in aerosols and gaseous species (HCl, HNO, HONO, SO, and NH) over the North Pacific Ocean from July 4 to 15 and September 19 to October 3, 2022. Using high temporal resolution instruments aboard the Republic of Korea's icebreaker research vessel Araon, this study aimed to (1) report the spatial and temporal distributions of aerosols and gaseous species, (2) estimate the source contributions of continental anthropogenic pollutants, and (3) assess the influence of aerosol chemical composition and gaseous species on aerosol acidity and water content.
View Article and Find Full Text PDFTalanta
January 2025
Departement of Chemistry, Faculty of Natural Science, Jenderal Soedirman University, Purwokerto, Indonesia. Electronic address:
Dissolved Rare Earth Elements (REEs) concentrations have been widely used in geochemical studies due to their systematic changes in the environment, acting as tracers in various natural processes. In addition to the usefulness of naturally controlled chemical REE fractionations used in the ocean, the extraction and measurement procedures of seawater REEs using chelating resin and ICP-MS may also be subject to method-derived analytical fractionations, leading to potential misinterpretations. The bracketing standard and the Lu methods were compared to verify any fractionation or deviation associated with the analytical processes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Ocean Observation‑Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Hangzhou, 310058, China.
Cherenkov radiation (CR) is a fascinating phenomenon that occurs not only in electromagnetic (EM) waves but also in water waves. The V-shaped wake formed by a moving object on the water surface results from the constructive interference of water waves of different wavelengths, similar to CR. We designed and fabricated a one-dimensional (1D) water wave crystal to analogize the behavior of moving particles in water waves.
View Article and Find Full Text PDFBiomed Tech (Berl)
January 2025
College of Ocean, Jiangsu University of Science and Technology, Zhenjiang, China.
Objectives: In recent years, significant progress has been made in the research of gesture recognition using surface electromyography (sEMG) signals based on machine learning and deep learning techniques. The main motivation for sEMG gesture recognition research is to provide more natural, convenient, and personalized human-computer interaction, which makes research in this field have considerable application prospects in rehabilitation technology. However, the existing gesture recognition algorithms still need to be further improved in terms of global feature capture, model computational complexity, and generalizability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!