Antimicrobial resistance in the intensive care unit is an ongoing global healthcare concern associated with high mortality and morbidity rates and high healthcare costs. Select groups of bacterial pathogens express different mechanisms of antimicrobial resistance. Clinicians face challenges in managing patients with multidrug-resistant bacteria in the form of a limited pool of available antibiotics, slow and potentially inaccurate conventional diagnostic microbial modalities, mimicry of non-infective conditions with infective syndromes, and the confounding of the clinical picture of organ dysfunction associated with sepsis with postoperative surgical complications such as hemorrhage and fluid shifts. Potential remedies for antimicrobial resistance include specific surveillance, adequate and systematic antibiotic stewardship, use of pharmacokinetic and pharmacodynamic techniques of therapy, and antimicrobial monitoring and adequate employment of infection control policies. Novel techniques of combating antimicrobial resistance include the use of aerosolized antibiotics for lung infections, the restoration of gut microflora using fecal transplantation, and orally administered probiotics. Newer antibiotics are urgently needed as part of the armamentarium against multidrug-resistant bacteria. In this review we discuss mechanisms and patterns of microbial resistance in a select group of drug-resistant bacteria, and preventive and remedial measures for combating antibiotic resistance in the critically ill.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732010 | PMC |
http://dx.doi.org/10.3389/frabi.2023.1145190 | DOI Listing |
BMC Vet Res
January 2025
LABOKLIN GmbH & Co.KG, Labor für klinische Diagnostik, Steubenstraße 4, Bad Kissingen, D-97688, Germany.
Background: Mycoplasmas are an important cause of respiratory diseases in tortoises. In snakes, evidence of mycoplasma infections has been found almost exclusively in pythons. To better understand the occurrence of these bacteria in other snake species, samples submitted for routine testing for respiratory pathogens were also tested for mycoplasma by polymerase chain reaction (PCR).
View Article and Find Full Text PDFVirol J
January 2025
Virology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University (SAU), New Delhi, 110068, India.
Maturation inhibitors (MIs) block HIV-1 maturation by preventing the cleavage of the capsid protein and spacer peptide 1 (CA-SP1). Bevirimat (BVM), a first-in-class MI, displayed sub-optimal efficacy in clinical trials due to presence of SP1:V7A polymorphism in the Gag protein.This polymorphism is inherently present in HIV-1 subtype C and conferred resistance to BVM.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Infectious Disease Epidemiology, Robert Koch Institute (RKI), Berlin, Germany.
Background: Carbapenem-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA) are among WHO's priority pathogens with antimicrobial resistance (AMR). Studies suggest potential impacts of the COVID-19-pandemic on AMR. We described changes in AMR incidence and epidemiology in Germany during the COVID-19-pandemic.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
Staphylococcaceae are a diverse bacterial family with important implications for human and animal health. This study highlights the One Health relevance of their environmental dispersal, particularly, by identifying closely related or genetically identical strains circulating between farm and community environments. Environmental Staphylococcaceae strains were isolated from animal farms and interconnected areas within a university setting, both influenced by anthropogenic activities.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
January 2025
National reference centre for Haemophilus influenzae, Department of microbiology, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université libre de Bruxelles, Brussels, Belgium.
Introduction: Haemophilus influenzae plays a major role in invasive bacterial infections. Resistant strains are emerging, prompting the WHO to include H. influenzae on its list of priority pathogens for research and development of new antibiotics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!