Pancreatic cell damage in diabetes mellitus is closely linked to inflammation and apoptosis. This study aimed to investigate the protective effects of phloroglucinol on pancreatic cells in a streptozotocin-induced diabetic model by assessing its anti- inflammatory and anti-apoptotic mechanisms. Phloroglucinol ligand and the structures of Bax, Bcl-2, and caspase-3 proteins were sourced from the PubChem database. Molecular docking was performed using Autodock Tools and docking results were analyzed with PyRx software. In addition, during the in vivo study, the BALB/c mice were grouped into four categories: healthy control, untreated streptozotocin-induced diabetic, and streptozotocin-induced diabetic treated with two doses of oral phloroglucinol at 100 mg/kg and 200 mg/kg body weight. After 28 days, pancreatic tissues were collected for flow cytometric analysis of NF-κB, IL-6, TNF-α, and apoptotic markers (Bax, Bcl-2, and caspase-3). The docking simulations revealed specific binding interactions: phloroglucinol interacted with Bcl-2 via amino acid residues of ALA90 and TYR139, with Bax via ALA42, LEU45, ALA46, LEU47, PRO130, and ILE133, and with caspase-3 through ARG64, SER120, GLN161, CYS163, and ARG207. The binding affinities for Bax, Bcl-2, and caspase-3 were -5.0, -4.7, and -4.9 kcal/mol, respectively. In vivo, results showed that streptozotocin significantly elevated inflammatory cytokines NF-κB, TNF-α, and IL-6, along with apoptotic markers in pancreatic cells (<0.05) compared to healthy controls. Phloroglucinol administration at 200 mg/kg significantly reduced TNF-α, NF-κB and IL- 6 levels. Phloroglucinol also prevented streptozotocin-induced pancreatic cell damage through anti-apoptotic effects by downregulating Bax and caspase-3 and upregulating Bcl-2. These findings suggest that phloroglucinol may offer protective benefits in diabetic conditions by modulating apoptotic and inflammatory pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731660 | PMC |
http://dx.doi.org/10.52225/narra.v4i3.1211 | DOI Listing |
Lab Anim
January 2025
Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey.
Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.
One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
January 2025
Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11% in the United States. As for other types of tumors, such as colorectal cancer, aberrant lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.
Aim: To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid (FA) import into cell.
World J Gastrointest Oncol
January 2025
Department of Automatic Control Engineering, Feng Chia University, Taichung 407, Taiwan.
In this editorial, we will discuss the article by Tang published in the recent issue of the . They explored an innovative approach to enhancing gemcitabine (GEM) delivery and efficacy using human bone marrow mesenchymal stem cells (HU-BMSCs)-derived exosomes. The manufacture of GEM-loaded HU-BMSCs-derived exosomes (Exo-GEM) has been optimized.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Oncology, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
Dipeptidase 1 (DPEP1), initially identified as a renal membrane enzyme in mature human kidneys, plays a pivotal role in various cellular processes. It facilitates the exchange of materials and signal transduction across cell membranes, contributing significantly to dipeptide hydrolysis, glucose and lipid metabolism, immune inflammation, and ferroptosis, among other cellular functions. Extensive research has delineated the complex role of DPEP1 in oncogenesis and tumor progression, with its influence being context dependent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!