Memristive ternary Łukasiewicz logic based on reading-based ratioed resistive states (3R).

Philos Trans A Math Phys Eng Sci

Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH, Juelich, Germany.

Published: January 2025

The thirst for more efficient computational paradigms has reignited interest in computation in memory (CIM), a burgeoning topic that pivots on the strengths of more versatile logic systems. Surging ahead in this innovative milieu, multi-valued logic systems have been identified as possessing the potential to amplify storage density and computation efficacy. Notably, ternary logic has attracted widespread research owing to its relatively lower computational and storage complexity, offering a promising alternative to the traditional binary logic computation. This study provides insight into the feasibility of ternary logic in the CIM domain using resistive random-access memory (ReRAM) devices. Its multi-level programming capability making it an ideal conduit for the integration of ternary logic. We focus on ternary Łukasiewicz logic because its computational characteristics are highly suitable for mapping logic values with input and output signals. This approach is characterized by voltage-reading-based output for ease of subsequent utilization and computation and validated in 1T1R crossbar arrays in an integrated ReRAM chip (Memory Advanced Demonstrator 200 mm). In addition, the effect of variability of memristive devices on logical computation and the potential for parallel operation are also investigated.This article is part of the theme issue 'Emerging technologies for future secure computing platforms'.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2023.0397DOI Listing

Publication Analysis

Top Keywords

ternary logic
12
logic
9
ternary Łukasiewicz
8
Łukasiewicz logic
8
logic systems
8
computation
5
memristive ternary
4
logic based
4
based reading-based
4
reading-based ratioed
4

Similar Publications

Memristive ternary Łukasiewicz logic based on reading-based ratioed resistive states (3R).

Philos Trans A Math Phys Eng Sci

January 2025

Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH, Juelich, Germany.

The thirst for more efficient computational paradigms has reignited interest in computation in memory (CIM), a burgeoning topic that pivots on the strengths of more versatile logic systems. Surging ahead in this innovative milieu, multi-valued logic systems have been identified as possessing the potential to amplify storage density and computation efficacy. Notably, ternary logic has attracted widespread research owing to its relatively lower computational and storage complexity, offering a promising alternative to the traditional binary logic computation.

View Article and Find Full Text PDF

High-performance ternary logic circuits and neural networks based on carbon nanotube source-gating transistors.

Sci Adv

January 2025

Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China.

Multi-valued logics (MVLs) offer higher information density, reduced circuit and interconnect complexity, lower power dissipation, and faster speed over conventional binary logic system. Recent advancement in MVL research, particularly with emerging low-dimensional materials, suggests that breakthroughs may be imminent if multistates transistors can be fabricated controllably for large-scale integration. Here, a concept of source-gating transistors (SGTs) is developed and realized using carbon nanotubes (CNTs).

View Article and Find Full Text PDF

This article describes an optically adjustable, dual complementary molecular TRANSFER and COMPLEMENT logic gate as well as an extremely rare design of excitation-modulated logic systems using a pyrene coupled bis(indolyl)methane derivative (1) in Brij-58 micelles, triggered by different chemical stimuli. We have looked into the optical response of the probe molecule towards variety of analytes, including OH, CN, Hg, EDTA ., at various excitation channels, in order to achieve this goal.

View Article and Find Full Text PDF

The quantitative detection of HO is of great significance for preventing the occurrence of diseases. In this work, an electrochemical biosensor for detecting HO was constructed through a step-by-step modification method. The PDEA-HRP/MXene/PG biosensor (PDEA = poly(N,N-dimethyl acrylamide), HRP = horseradish peroxidase, PG = pyrolytic graphite) was prepared with two-dimensional metal carbide (MXene) nano materials as the inner layer and PDEA-HRP hydrogel as the outer layer for the detection of HO.

View Article and Find Full Text PDF

Components needed in Artificial Intelligence with a higher information capacity are critically needed and have garnered significant attention at the forefront of information technology. This study utilizes solution-processed zinc-tin oxide (ZTO) thin-film phototransistors and modulates the values of , which allows for the regulation of electron trapping/detrapping at the ZTO/SiO interface. By coupling the excited photonic carrier and electronic trapping, logic gates such as "AND," "OR," "NAND," and "NOR" can be achieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!