Intervertebral disc degeneration (IVDD) is a common contributor for low back pain, which is featured by loss of extracellular matrix and nucleus pulposus cells (NPCs). Hence, our current study is undertaken to explore the potential mechanism of NPC apoptosis during IVDD. Transcription factor Dp-1 (TFDP1) expression in degenerative and non-degenerative intervertebral disc tissues was analyzed by bioinformatics. After transfection as needed, viability and apoptosis of NPCs were evaluated by cell counting kit-8 assay and flow cytometry, respectively. Western blot or quantitative real-time reverse transcription polymerase chain reaction was applied to assess expressions of TFDP1, matrix metallopeptidase 9 (MMP9), a disintegrin and metalloproteinase 15 (ADAM15), and apoptosis-associated proteins. TFDP1 expression was upregulated in degenerative intervertebral disc tissues. TFDP1 overexpression repressed viability, promoted apoptosis, increased expressions of Bax, Cleaved caspase 3, MMP9 and ADAM15, and decreased Bcl-2 expression in NPCs, while TFDP1 silencing did conversely. ADAM15 silencing promoted viability, inhibited apoptosis, increased Bcl-2 expression, and decreased Bax, Cleaved caspase 3, and MMP9 expressions in NPCs, which were reversed by TFDP1 overexpression. TFDP1 overexpression promotes apoptosis of NPCs in IVDD through regulating ADAM15/MMP9 axis, highlighting its role as a molecular target for the treatment of low back pain.

Download full-text PDF

Source
http://dx.doi.org/10.4149/gpb_2024040DOI Listing

Publication Analysis

Top Keywords

tfdp1 overexpression
16
intervertebral disc
16
tfdp1
8
overexpression promotes
8
promotes apoptosis
8
nucleus pulposus
8
pulposus cells
8
disc degeneration
8
regulating adam15/mmp9
8
adam15/mmp9 axis
8

Similar Publications

Intervertebral disc degeneration (IVDD) is a common contributor for low back pain, which is featured by loss of extracellular matrix and nucleus pulposus cells (NPCs). Hence, our current study is undertaken to explore the potential mechanism of NPC apoptosis during IVDD. Transcription factor Dp-1 (TFDP1) expression in degenerative and non-degenerative intervertebral disc tissues was analyzed by bioinformatics.

View Article and Find Full Text PDF

Introduction: The transcriptomic characteristics of + non-small cell lung cancer (NSCLC) represent a crucial aspect of its tumor biology. These features provide valuable insights into key dysregulated pathways, potentially leading to the discovery of novel targetable alterations or biomarkers.

Methods: From The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, all available + (n = 10), + (n = 5) and + (n = 5) NSCLC tumor and + cell line (n = 7) RNA-sequencing files were collected.

View Article and Find Full Text PDF

TFDP1 transcriptionally activates KIF22 to enhance aggressiveness and stemness in endometrial cancer: implications for prognosis and targeted therapy.

J Mol Histol

December 2024

Department of Medical Oncology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Avenue, Kecheng District, Quzhou City, 324000, Zhejiang Province, China.

This study aims to elucidate the role of Kinesin Family Member 22 (KIF22) as a critical regulator of aggressive behavior in endometrial cancer (uterine corpus endometrial carcinoma, UCEC) and to uncover its underlying mechanisms, thereby providing a molecular rationale for future targeted treatment. Bioinformatics analyses were employed to assess KIF22 and TFDP1 expression in UCEC, examining their prognostic value and associations with disease progression. Expression levels were validated in UCEC tissues using qRT-PCR and western blotting.

View Article and Find Full Text PDF

CKAP2 Regulated by TFDP1 Promotes Metastasis and Proliferation of Colorectal Cancer through Affecting the Tumor Microenvironment.

J Microbiol Biotechnol

November 2024

Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China.

The current pathological and physiological evaluation system for colorectal cancer (CRC) is limited; thus, effective biological targets to diagnose and treat this disease are urgently needed. In this study, we used qRT-PCR for detecting mRNA levels of genes. The levels of protein were identified by western blot, immunohistochemistry, and immunofluorescence assays.

View Article and Find Full Text PDF

Transcription factor Dp-1 knockdown downregulates thymidine kinase 1 expression to protect against proliferation and epithelial-mesenchymal transition in cervical cancer.

Funct Integr Genomics

September 2023

Department of Urology Surgery, Hunan Cancer Hospital, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China.

Thymidine kinase 1 (TK1) level is an independent survival prognostic factor for both premalignant and malignant cervical pathologies. Herein, this study sought to probe the impacts of TK1 on cervical cancer (CC) progression and its underlying mechanism. Transcription factor Dp-1 (TFDP1) and TK1 expression was assessed using qRT-PCR in CC cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!