Background: Cisplatin is widely used in clinical practice, but its nephrotoxicity severely limits its use. Previous studies have shown that cisplatin-induced acute kidney injury (AKI) is closely related to mitochondrial damage and that alleviating mitochondrial dysfunction can alleviate cisplatin-induced AKI. Methylcrotonyl‑CoA carboxylase 2 (MCCC2) is mainly located in mitochondria, where it catalyzes the catabolism of leucine and maintains mitochondrial function; however, the role of MCCC2 in cisplatin-induced renal injury has not yet been studied.

Methods: In vitro, the expression of MCCC2 was manipulated by transfecting HK-2 cells with lentiviruses, and changes in the acetoacetate content, cell viability, apoptosis, oxidative stress, mitochondrial function, and mitochondrial biogenesis were evaluated. In vivo, MCCC2 overexpression was manipulated by adeno-associated viruses, and serum and kidneys were collected for subsequent experiments to detect changes in renal function, tissue damage, apoptosis, oxidative stress, mitochondrial damage, and mitochondrial biogenesis.

Results: We found that MCCC2 was downregulated in cisplatin-induced AKI models. In vitro, leucine catabolism was inhibited by cisplatin, while overexpression of MCCC2 supported leucine catabolism, upregulated peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression, promoted mitochondrial biogenesis, improved mitochondrial function, and alleviated cisplatin-induced apoptosis and oxidative stress in HK-2 cells. In contrast, the knockdown of MCCC2 exacerbated these effects, while leucine deprivation reversed the effects of MCCC2 overexpression on mitochondrial function and biogenesis. In vivo, the overexpression of MCCC2 promoted mitochondrial biogenesis, maintained the integrity of the mitochondrial structure and function, and alleviated cisplatin-induced AKI.

Conclusion: MCCC2 supported leucine catabolism and promoted mitochondrial biogenesis, providing a new therapeutic strategy for cisplatin-induced AKI.

Download full-text PDF

Source
http://dx.doi.org/10.23876/j.krcp.24.169DOI Listing

Publication Analysis

Top Keywords

mitochondrial biogenesis
20
leucine catabolism
16
mitochondrial function
16
mitochondrial
14
cisplatin-induced aki
12
apoptosis oxidative
12
oxidative stress
12
promoted mitochondrial
12
mccc2
10
cisplatin-induced
8

Similar Publications

Background: Cisplatin is widely used in clinical practice, but its nephrotoxicity severely limits its use. Previous studies have shown that cisplatin-induced acute kidney injury (AKI) is closely related to mitochondrial damage and that alleviating mitochondrial dysfunction can alleviate cisplatin-induced AKI. Methylcrotonyl‑CoA carboxylase 2 (MCCC2) is mainly located in mitochondria, where it catalyzes the catabolism of leucine and maintains mitochondrial function; however, the role of MCCC2 in cisplatin-induced renal injury has not yet been studied.

View Article and Find Full Text PDF

Background: Obesity is a chronic disease associated with increased risk of multiple metabolic and mental health-related comorbidities. Recent advances in obesity pharmacotherapy, particularly with glucagon-like peptide-1 (GLP-1) receptor agonists (RAs), have the potential to transform obesity and type 2 diabetes mellitus (T2DM) care by promoting marked weight loss, improving glycaemic control and addressing multiple obesity-related comorbidities, with added cardio-renal benefits. Dual agonists combining GLP-1 with other enteropancreatic hormones such as glucose-dependent insulinotropic polypeptide (GIP) have also been developed in recent years, leading to greater weight loss than using GLP-1 RAs alone.

View Article and Find Full Text PDF

Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice.

Nat Cardiovasc Res

January 2025

Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Cardiac growth patterns and metabolism before and after birth in swine: Role of miR in proliferation, hypertrophy and metabolism.

J Mol Cell Cardiol Plus

September 2024

Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.

The adult mammalian heart is unable to undergo cardiac repair, limiting potential treatment options after cardiac damage. However, the fetal heart is capable of cardiac repair. In preparation for birth, cardiomyocytes (CMs) undergo major maturational changes that include exit from the cell cycle, hypertrophic growth, and mitochondrial maturation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!