Emerging evidence indicates that autophagy is tightly connected to the endocytic pathway. Here, we questioned the role of presenilins (PSENs 1 and 2), previously shown to be involved in autophagy regulation, in the secretion of small endocytic-originating extracellular vesicles known as exosomes. Indeed, while wild-type cells responded to stimuli promoting both multivesicular endosome (MVE) formation and secretion of small extracellular vesicles (sEVs) enriched in canonical exosomal proteins, PSEN-deficient cells were almost unaffected to these stimuli. Moreover, in PSEN-deficient cells, the re-expression of either PSEN1 or the functional active PSEN1delta9 mutant led to a rescue of most sEV secretion, while the deletion of PSEN1 alone almost fully phenocopied total PSEN invalidation. We found that the lack of sEV secretion in PSEN-deficient cells was also due to overactivated autophagy promoting MVEs to degradation rather than to plasma membrane fusion. Hence, in these cells, the autophagic blocker bafilomycin A1 (BafA1) not only increased the intracellular levels of the MVE protein CD63, but also turned on sEV secretion by stimulating autophagy-dependent unconventional secretion. In that case, sEVs arised from amphisomes and were enriched in both canonical exosomal proteins and lysosomal-autophagy-associated cargo. Altogether, we here demonstrate that PSENs, and particularly PSEN1, act as hub proteins controlling the balance between endosomal/autophagic degradation and secretion. More generally, our findings strengthen the view of a strong interconnection between the endocytic and autophagic pathways and their complementary roles in sEV secretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jev2.70019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!