The formation of protein condensates (droplets) via liquid-liquid phase separation (LLPS) is a commonly observed phenomenon in vitro. Changing the environmental properties with cosolutes, molecular crowders, protein partners, temperature, pressure, etc. has been shown to favor or disfavor the formation of protein droplets by fine-tuning the water-water, water-protein, and protein-protein interactions. Therefore, these environmental properties and their spatiotemporal fine-tuning are likely to be important also in a cellular context at the existing protein expression levels. One of the key physicochemical properties of biomolecules impacted by molecular crowding is diffusion, which determines the viscoelastic behavior of the condensates. Here, we investigate the change in the rotational diffusion of γD-crystallin, undergoing LLPS in vitro in aqueous solutions in the absence and presence of cosolutes. We studied its rotational dynamics using molecular dynamics simulations (MD), electron paramagnetic resonance (EPR) spectroscopy, and fluorescence spectroscopy. MD simulations performed under dilute and crowded conditions show that the rotational diffusion of crystallin in water is retarded by 1 to 2 orders of magnitude in the condensed phase. To obtain the rotational dynamics in the dilute phase, we used fluorescence anisotropy and to extract the retardation factor in the condensed phase, we used spin-labeled γD-crystallin proteins as EPR viscosity nanoprobes. Aided by a viscosity nanoruler calibrated with solutions at increasing sucrose concentrations, we validated the rotational diffusion retardation predicted by MD simulations. This study underlines the predictive power of MD simulations and showcases the use of a sensitive EPR nanoprobe to extract the viscosity of biomolecular condensates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.4c06259DOI Listing

Publication Analysis

Top Keywords

rotational dynamics
12
rotational diffusion
12
liquid-liquid phase
8
phase separation
8
formation protein
8
environmental properties
8
condensed phase
8
rotational
6
phase
5
combined approach
4

Similar Publications

Aerodynamic performance enhancement of centrifugal compressor using numerical techniques.

F1000Res

January 2025

Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Background: Centrifugal compressors are dynamic machines utilizing a rotating impeller, efficiently accelerate incoming gases, transforming kinetic energy into pressure energy for compression. They serve a wide range of industries, including air conditioning, refrigeration, gas turbines, industrial processes, and applications such as air compression, gas transportation, and petrochemicals, demonstrating their versatility. Designing a centrifugal compressor poses challenges related to achieving high aerodynamic efficiency, surge and choke control, material selection, rotor dynamics, cavitation, erosion, and addressing environmental considerations while balancing costs.

View Article and Find Full Text PDF

Porous nanomaterials have shown great promise in many desalination applications. Zeolite nanotubes, featuring abundant but inhomogeneous nanopores on their surface, have been recently synthesized in experiments; however, their capacity for desalination is not yet understood. In this work, we use molecular dynamics simulations to investigate the capability of assembled zeolite nanotube membranes to perform in desalination applications due to their inherent multiscale porous properties.

View Article and Find Full Text PDF

The formation of protein condensates (droplets) via liquid-liquid phase separation (LLPS) is a commonly observed phenomenon in vitro. Changing the environmental properties with cosolutes, molecular crowders, protein partners, temperature, pressure, etc. has been shown to favor or disfavor the formation of protein droplets by fine-tuning the water-water, water-protein, and protein-protein interactions.

View Article and Find Full Text PDF

High-resolution phase-contrast 3D imaging using nano-holotomography typically requires collecting multiple tomograms at varying sample-to-detector distances, usually 3 to 4. This multi-distance approach limits temporal resolution, making it impractical for studies. Moreover, shifting the sample complicates reconstruction, requiring precise alignment, registration, and interpolation to correct for shift-dependent magnification on the detector.

View Article and Find Full Text PDF

CFD simulation of turbulent mass transfer of HS and O in a stirring tank.

Water Sci Technol

January 2025

Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin 13355, Germany.

This study explores the computational fluid dynamics (CFD) simulation of oxygen (O) and hydrogen sulfide (HS) mass transfer in a highly turbulent stirring tank. Using the open-source software OpenFOAM, we extended three-dimensional two-phase flow solvers with a rotating mesh feature to model the mass transfer processes between the water and air phases. The accuracy of these simulations was validated against experimental data, demonstrating a strong agreement in the mass transfer rates of HS and O.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!