Malaria, a life-threatening disease caused by Plasmodium parasites, continues to pose a significant global health threat, with nearly 250 million infections and over 600 000 deaths reported annually by the WHO. Fighting malaria is particularly challenging partly due to the complex life cycle of the parasite. However, technological breakthroughs such as the development of the nucleoside-modified mRNA lipid nanoparticle (mRNA-LNP) vaccine platform, along with the discovery of novel conserved Plasmodium antigens such as the E140 protein, present new opportunities in malaria prevention. Importantly, production of recombinant proteins for malaria vaccine evaluation by serological assays often represents an additional hurdle because many Plasmodium proteins are complex and often contain transmembrane domains that make production and purification particularly difficult. This research protocol provides a step-by-step guide for the production and purification of P. berghei and P. vivax E140 protein fragments that can be used to test humoral immune responses against this novel malaria vaccine target. We demonstrate that the purified proteins can be successfully used in enzyme-linked immunosorbent assay (ELISA) to evaluate antigen-specific binding antibody responses in sera obtained from E140 mRNA-LNP-vaccinated mice. Therefore, these proteins can contribute to the development and evaluation of E140-based malaria vaccines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/2211-5463.13939 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!