Weaning is essential for foal growth and development. We determined the intestinal flora structure of donkey foals at the end of weaning (PreW_4d) and three stages after weaning (PostW_4d, PostW_8d, and PostW_15d) to explore the effects of weaning on intestinal development of donkey foals. The results showed that the main microbial flora in the gut of the donkey foal were Firmicutes and Bacteroides, and the proportion of Firmicutes gradually increased with weaning, which was an important reflection of the donkey foal's adaptability to the transition from lactose liquid feed to plant fiber solid feed. We also identified important microorganisms that maintain intestinal stability and boost immune, such as oscillospiraceae, Firmicutes, and lachnospiraceae. The metabolome showed that serum metabolites were mainly enriched in arachidonic acid metabolism and the tricarboxylic acid cycle (TCA cycle), which can influence energy metabolism, growth, and immunity in weaned donkey foals. We also found that the metabolite resveratrol was positively correlated with g_NK4A214_group and lactobacillus, which may have important implications for the prevention of diseases such as colon-inflammation in donkey foals. In summary, we provide a theoretical basis for studying the mechanism of intestinal microbiome and serum metabolite changes in weaning and postweaning donkey foals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/asj.70021 | DOI Listing |
J Vet Intern Med
January 2025
Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.
Background: Oxidative injury occurs in septic people, but the role of oxidative stress and antioxidants has rarely been evaluated in foals.
Objectives/hypothesis: To measure reactive oxygen species (ROS), biomarkers of oxidative injury, and antioxidants in neonatal foals. We hypothesized that ill foals would have higher blood concentrations of ROS and biomarkers of oxidative injury and lower concentrations of antioxidants compared to healthy foals.
Vet Sci
January 2025
Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China.
Equine herpesvirus-1 (EHV-1) is a significant pathogen that causes substantial economic losses in the equine industry worldwide, which leads to severe respiratory diseases and abortions in horses. However, reports of EHV-1 infection in donkeys are limited, particularly in China. This case study reported an EHV-1-induced respiratory disease in Dezhou donkey foals in Shandong Province, China, in July 2024.
View Article and Find Full Text PDFActa Vet Scand
January 2025
Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, 00014, Helsinki, Finland.
Background: Pulse oximetry has not been thoroughly evaluated for assessment of oxygenation in conscious foals. Compared with invasive arterial blood sampling, it is a painless and non-invasive method for real-time monitoring of blood oxygen saturation. The aim of this prospective clinical study was to evaluate the usability, validity, and reliability of pulse oximetry at two measuring sites (lip and caudal abdominal skin fold) for blood oxygen saturation measurement in conscious foals with and without respiratory compromise.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, CA, 95616, USA.
Objectives: Diarrhea is a common disease that could threaten the welfare of newborn foals. While there are several forms of foal diarrhea, the etiologies can be considered known pathogenic or non-pathogenic in nature. Moreover, there are likely differences in the composition of microbial populations in the gastrointestinal tracts of foals depending upon the etiology of diarrhea.
View Article and Find Full Text PDFAnim Sci J
January 2025
National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd, Dong-E Country, Shandong Province, China.
Weaning is essential for foal growth and development. We determined the intestinal flora structure of donkey foals at the end of weaning (PreW_4d) and three stages after weaning (PostW_4d, PostW_8d, and PostW_15d) to explore the effects of weaning on intestinal development of donkey foals. The results showed that the main microbial flora in the gut of the donkey foal were Firmicutes and Bacteroides, and the proportion of Firmicutes gradually increased with weaning, which was an important reflection of the donkey foal's adaptability to the transition from lactose liquid feed to plant fiber solid feed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!