Quantum key distribution (QKD) is critical for future proofed secure communication. Satellites will be necessary to mediate QKD on a global scale. The limitations of the existing quantum memory and repeater technology mean that twin-field QKD (TF-QKD) provides the most feasible near-term solution to perform QKD with an untrusted satellite. However, the TF-QKD requires links between ground stations and satellites to be phase stable. We show that phase stabilization of the links to LEO and MEO satellites is feasible in spite of phase noise due to atmospheric turbulence, laser instability, and path length asymmetry while only incurring a quantum bit error rate (QBER) penalty of less than 1.5%. These results are also applicable to future untrusted satellite networks employing precisely synchronized quantum memories or quantum repeaters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.541228 | DOI Listing |
Chemistry
January 2025
University of Hyderabad School of Chemistry, School of Chemistry, School of Chemistry, University of Hyderabad, 500046, Hyderabad, INDIA.
The amorphous/crystalline (A/C) assembly in molecular solids has a direct bearing on their attributes and applications, including mechanical, pharmaceutical, electronic and photophysical. A systematic analysis of the molecular features and interactions that determine the predilection towards the A, C or bi-stable A-C states is critical. This fundamental problem is addressed through an exhaustive investigation of a large family of alkoxyalkyl diaminodicyanoquinodimethanes (ROR'-DADQs); enhancement of their fluorescence from the solution, to the A, to the C state serves as an excellent signature of the phase preference and temporal stability.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China.
Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.
Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.
ACS Appl Mater Interfaces
January 2025
Institute of Soft-matter and Advanced Functional Materials, Gansu Province Carbon New Material Industry Technology Center, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
Hexagonal boron nitride (h-BN), with excellent thermal conductivity and insulation capability, has garnered significant attention in the field of electronic thermal management. However, the thermal conductivity of the h-BN-enhanced polymer composite material is far from that expected because of the insurmountable interfacial thermal resistance. In order to realize the high thermal conductivity of polymer composite thermal interface materials, herein, an in situ exfoliation method has been employed to prepare a boron nitride nanosheet-graphene (BNNS-Gr) hybrid filler.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
January 2025
Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, China.
Background: Microvascular invasion (MVI) is a significant risk factor for recurrence and metastasis following hepatocellular carcinoma (HCC) surgery. Currently, there is a paucity of preoperative evaluation approaches for MVI.
Aim: To investigate the predictive value of texture features and radiological signs based on multiparametric magnetic resonance imaging in the non-invasive preoperative prediction of MVI in HCC.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!