Single-shot ptychography is a quantitative phase imaging method wherein overlapping beams of light arranged in a grid pattern simultaneously illuminate a sample, allowing a full ptychographic dataset to be collected in a single shot. It is primarily used at optical wavelengths, but there is interest in using it for x-ray imaging. However, constraints imposed by x-ray optics have limited the resolution achievable to date. In this work, we reinterpret single-shot ptychography as a structured illumination method by viewing the grid of beams as a single, highly structured illumination function. Pre-calibrating this illumination and reconstructing single-shot data using the randomized probe imaging algorithm allows us to account for the overlap and coherent interference between the diffraction arising from each beam. We achieve a resolution 3.5 times finer than the numerical aperture-based limit imposed by traditional algorithms for single-shot ptychography. We argue that this reconstruction method will work better for most single-shot ptychography experiments and discuss the implications for the design of future single-shot x-ray microscopes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.545836 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!