Atoms in Rydberg states are an important building block for emerging quantum technologies. While excitation to Rydberg orbitals is typically achieved in more than tens of nanoseconds, the physical limit is in fact much faster, at the ten picoseconds level. Here, we tackle such ultrafast Rydberg excitation of a rubidium atom by designing a dedicated pulsed laser system generating 480 nm pulses of 10 ps duration. In particular, we improved upon our previous design by using an injection-seeded optical parametric amplifier (OPA) to obtain a stable pulsed energy, decreasing the fluctuation from 30 to 6%. We then succeeded in ultrafast excitation of Rydberg atoms with excitation probability of ∼90%, not limited anymore by energy fluctuation but rather by the atomic state preparation, addressable in future works. This achievement broadens the range of applications of Rydberg atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.538707DOI Listing

Publication Analysis

Top Keywords

excitation rydberg
12
rydberg atoms
12
ultrafast excitation
8
rydberg
6
excitation
5
generation 480
4
480 picosecond
4
picosecond pulses
4
pulses ultrafast
4
atoms
4

Similar Publications

Atoms in Rydberg states are an important building block for emerging quantum technologies. While excitation to Rydberg orbitals is typically achieved in more than tens of nanoseconds, the physical limit is in fact much faster, at the ten picoseconds level. Here, we tackle such ultrafast Rydberg excitation of a rubidium atom by designing a dedicated pulsed laser system generating 480 nm pulses of 10 ps duration.

View Article and Find Full Text PDF

Interaction-Enhanced Superradiance of a Rydberg-Atom Array.

Phys Rev Lett

December 2024

CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China.

We study the superradiant phase transition of an array of Rydberg atoms in a dissipative microwave cavity. Under the interplay of the cavity field and the long-range Rydberg interaction, the steady state of the system exhibits an interaction-enhanced superradiance, with vanishing critical atom-cavity coupling rates at a discrete set of interaction strengths. We find that, while the phenomenon can be analytically understood in the case of a constant all-to-all interaction, the enhanced superradiance persists under typical experimental parameters with spatially dependent interactions, but at modified critical interaction strengths.

View Article and Find Full Text PDF

Laser excitation of the 1-2 transition in singly-ionized helium.

Commun Phys

December 2024

LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands.

Laser spectroscopy of atomic hydrogen and hydrogen-like atoms is a powerful tool for tests of fundamental physics. The 1-2 transition of hydrogen in particular is a cornerstone for stringent Quantum Electrodynamics (QED) tests and for an accurate determination of the Rydberg constant. We report laser excitation of the 1-2 transition in singly-ionized helium (He), a hydrogen-like ion with much higher sensitivity to QED than hydrogen itself.

View Article and Find Full Text PDF

Symmetry Breaking in the Lowest-Lying Excited-State of CCl: Valence Shell Spectroscopy in the 5.0-10.8 eV Photon Energy Range.

Molecules

November 2024

Atomic and Molecular Collisions Laboratory, CEFITEC-Centre of Physics and Technological Research, Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.

We report absolute high-resolution vacuum ultraviolet (VUV) photoabsorption cross-sections of carbon tetrachloride (CCl) in the photon energy range 5.0-10.8 eV (248-115 nm).

View Article and Find Full Text PDF

In the zoo of emergent symmetries in quantum many-body physics, the previously unrealized emergent spacetime supersymmetry (SUSY) is particularly intriguing. Although it was known that spacetime SUSY could emerge at the (1+1)d tricritical Ising transition, an experimental realization is still absent. In this Letter, we propose to realize emergent spacetime SUSY using reconfigurable Rydberg atom arrays featuring two distinct sets of Rydberg excitations, tailored for implementation on dual-species platforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!